Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 116 (2002), S. 6411-6421 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: An approach in which the total energy of interacting subsystems is expressed as a bifunctional depending explicitly on two functions: electron densities of the two molecules forming a complex (ρ1 and ρ2) was used to determine the equilibrium geometry and the binding energy of several weak intermolecular complexes involving carbazole and such atoms or molecules as Ne, Ar, CH4, CO, and N2. For these complexes, the experimental dissociation energies fall within the range from 0.48 to 2.06 kcal/mol. Since the effect of the intermolecular vibrations on the dissociation energy is rather small, the experimental measurements provide an excellent reference set. The obtained interaction energies are in a good agreement with experiment and are superior to the ones derived from conventional Kohn–Sham calculations. A detailed analysis of relative contribution of the terms which are expressed using approximate functionals (i.e., exchange-correlation Exc[ρ1+ρ2] and nonadditive kinetic energy Tsnad[ρ1,ρ2]=Ts[ρ1+ρ2]−Ts[ρ1]−Ts[ρ2]) is made. The nonvariational version of the applied formalism is also discussed. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...