Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 104 (1996), S. 9437-9444 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Analytical expressions for the first and second derivatives of the Hartree–Fock energy have been derived in case of a solvated system simulated by a multipolar charge distribution embedded in a cavity of arbitrary shape and a solvent represented by a dielectric continuum. A computer code has been written on these bases. It allows geometry optimizations and more generally the determination of the critical points of the potential energy surface for a molecular system interacting with a solvent as easily as in the case of an isolated molecule. The use of this code is illustrated by the computation of the main features of the reaction path of a Menshutkin-type reaction in various solvents. The results compare pretty well with those obtained by a full Monte Carlo simulation of the solvent by Gao. This agreement supports the idea that solvents, including water, can be safely modeled by a continuum. The advantage of such models rests in the fact that they allow refined computations on the solute at a minimum computational expense. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...