Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 104 (1996), S. 8321-8331 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Bath-induced coherence transfer effects on a time- and frequency-resolved resonant light scattering spectrum is theoretically investigated using the Markoff master equation. According to Eberly and Wódkiewicz, a general expression for an experimentally observable spectrum in terms of a molecular response function is derived within the density matrix formalism. To generalize our previous results of the bath-induced coherence transfer which were derived based on a displaced harmonic oscillator model [Y. Ohtsuki and Y. Fujimura, J. Chem. Phys. 91, 3903 (1989)], an eigenstate basis is used to represent a relevant system for investigating characteristics of the transfer. By the present model, we clarify the dependence of the bath-induced coherence transfer on the energy-level structure of the intermediate states associated with the transfer, i.e., energy mismatch effects. It is shown that if the energy mismatch of these states is smaller than dephasing rates, the bath-induced coherence transfer occurs resonantly. In the other cases, the energy mismatch brings about a modulation in the time evolution of the superposition state created by the bath-induced coherence transfer, which strongly diminishes the efficiency of the transfer. The resonance condition is derived analytically and is confirmed by numerical calculations of quantum beats induced by the bath-induced coherence transfer. The possibility of very rapid dephasing of a quantum beat signal which cannot be explained in terms of dephasing rates is also shown, when the transition moments have such values that give π-phase-shifted quantum beats in bath-induced fluorescence. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...