Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 100 (1994), S. 4211-4228 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Simulations of the quantum dynamics of the HF molecule immersed in a field of five overlapping, intense, linearly polarized, infrared laser pulses of subpicosecond duration are performed. The HF molecule, initially in its ground state, is modeled as a rotating oscillator interacting with a classical laser field via electric dipole interaction. Realistic potential and dipole functions are used. Optimal overlaps of the five laser pulses, as well as the optimal carrier frequencies of the laser pulses, are found which maximize the HF dissociation yield. A maximal yield of 45% in a single combined pulse is achieved using the best available potential and dipole moment functions. The optimal infrared multiphoton dissociation pathway for the HF molecule includes a series of the Δv=1 vibrational-rotational transitions followed by a series of Δv≥2 vibrational-rotational transitions. The latter is necessary as a consequence of the vanishing Δv=1 transition moment around v=12. In the Δv=1 regime, both P and R branch transitions are found to be important. The angular distribution of the dissociative flux is computed. Robustness of the results with respect to changes in the interatomic potentials, dipole functions and reduced mass, as well as to changes in laser pulse parameters (carrier frequencies, timings, phases, field amplitudes, and pulse durations) is investigated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...