Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 72 (2001), S. 1613-1619 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The spatial resolution for infrared microspectroscopy is investigated to determine the practical limits imposed by diffraction or optical aberrations. Quantitative results are obtained using high brightness synchrotron radiation, which serves as a diffraction-limited infrared "point source" for the microscope. The measured resolving power is in good agreement with diffraction theory, including a ∼ 30% improvement for a confocal optical arrangement. The diffraction calculation also shows how the confocal setup leads to better image contrast. The full width at half maximum of the instrument's resolution pattern is approximately λ/2 for this arrangement. One achieves this diffraction limit when the instrument's apertures define a region having dimensions equal to the wavelength of interest. While commercial microspectrometers are well corrected for optical aberrations (allowing diffraction-limited results), the standard substrates used for supporting specimens introduce chromatic aberrations. An analysis of this aberration is also presented, and correction methods described. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...