Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 284-286 (Apr. 2005), p. 133-136 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A new bioactive bone cement (cGBC) consisting of crystallized MgO-CaO-SiO2-P2O5 glass beads and high-molecular-weight polymethyl methacrylate (hPMMA) has been developed to overcome the degradation seen with a previously reported cement (GBC) consisting of MgO-CaO-SiO2-P2O5-CaF2 glass beads and hPMMA. The purpose of the present study was to evaluate the degradation of cGBC using an in vivo aging test, and to compare the degradation of cGBC with that of GBC. Hardened rectangular specimens (20x4x3mm) were prepared from bothcements. Their initial bending strengths were measured using the three-point bending method. GBC and cGBC specimens were then implanted into the dorsal subcutaneous tissue of rats, removed after 6 or 12 months, and tested for bending strength. The initial bending strengths (MPa) of GBC and cGBC were 141.9±1.8 and 144.4±2.4, respectively, while at 6 months they were 109.1±2.6 and 114.1±4.9,and at 12 months they were 109.1±3.2 and 113.1±3.3, respectively. Although the difference in initial bending strengths was not significant, the bending strength of cGBC was significantly higher than that of GBC at 6 and 12 months, indicating that cGBC is more resistant to cement degradation. The bending strengths of both GBC and cGBC decreased significantly from 0 to 6 months but did not change significantly thereafter. Thus, degradation of cGBC and GBC does not appear to continue after 6 months. We believe that cGBC and GBC are strong enough for use under weight-bearing conditions and that their mechanical strength (especially that of cGBC) is retained in vivo
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...