Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 7 (1995), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The regional distribution of alternatively spliced messenger RNA encoding the N-methyl-D-aspartate (NMDA) receptor R1 subunit (NMDAR1) variants was examined by in situ hybridization in the rat lumbar spinal cord. Splice-specific oligonucleotide probes [recognizing full-length mRNA (NMDAR1-1), deletion exon 21 (NMDAR1-2), deletion exon 22 (NMDAR1-3), combined deletion exons 21 and 22 (NMDAR1-4) and mRNA which lacks (NMDAR1-a) or contains exon 5 (NMDAR1-b)] detected marked differences in abundance and distribution of N- and C-terminal spliced variants. The NMDAR1-a, NMDAR1-2 and NMDAR1-4 mRNAs were evenly distributed throughout all laminae of the dorsal and ventral horns. In the superficial dorsal horn NMDAR1-b mRNA was preferentially detected in laminae II inner and III, while NMDAR1-1 mRNA was restricted to laminae I to III. Large neurons in laminae IV and V contained mainly NMDAR1-a, NMDAR1-2 and NMDAR1-4 mRNAs and occasionally NMDAR1-b. The NMDAR1-3 variant was only detected in very low abundance, being restricted to occasional cells in lamina I and II. In the ventral horn, motor neurons showed strong signals for NMDAR1-a, NMDAR1-b, NMDAR1-2 and NMDAR1-4 mRNAs. Serial sectioning through large motor neurons permitted the detection of multiple splice variants in single neurons. Analysis of the subcellular distribution of the mRNAs revealed that the NMDAR1-1 mRNA was almost exclusively found in the cell nucleus, NMDAR1-a mRNA was largely in the cytoplasm, while all other splice variants showed a homogeneous distribution between nucleus and cytoplasm. Comparison of the in situ hybridization images with functional analyses of heteromeric recombinant receptors will be necessary to ascertain whether splice variants of the NMDAR1 receptor subunit can account for some of the known electrophysiological properties of spinal cord neurons under physiological and pathophysiological conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...