Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Catalytic group II introns are mobile retroelements that invade cognate intronless genes via retrohoming, where the introns reverse splice into double-stranded DNA (dsDNA) targets. They can also retrotranspose to ectopic sites at low frequencies. Whereas our previous studies with a bacterial intron, Ll.LtrB, supported frequent use of RNA targets during retrotransposition, recent experiments with a retrotransposition indicator gene indicate that DNA, rather than RNA, is a prominent target, with both dsDNA and single-stranded DNA (ssDNA) as possibilities. Thus retrotransposition occurs in both transcriptional sense and antisense orientations of target genes, and is largely independent of homologous DNA recombination and of the endonuclease function of the intron-encoded protein, LtrA. Models based on both dsDNA and ssDNA targeting are presented. Interestingly, retrotransposition is biased toward the template for lagging-strand DNA synthesis, which suggests the possibility of the replication folk as a source of ssDNA. Consistent with some use of ssDNA targets, many retrotransposition sites lack nucleotides critical for the unwinding of target duplex DNA. Moreover, in vitro the intron reverse spliced into ssDNA more efficiently than dsDNA substrates for some of the retrotransposition sites. Furthermore, many bacterial group II introns reside on the lagging-strand template, hinting at a role for DNA replication in intron dispersal in nature.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...