Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-02-26
    Description: Adopting a statistical approach for the computation of turbulent combustion flows an approximation for the probability density function (PDF) of the composition variables is often required to treat the highly non-linear reaction term in a satisfactory way. One class of methods currently being used are the moment methods which employ transport equations for low order statistical moments and use a parametrized shape of the PDF. A second class solves a transport equation for the joint PDF by a Monte Carlo method. In the present paper we develop an intermediate algorithm based on a Galerkin method for the PDF transport equation. The solution is developed in terms of an orthogonal or bi-orthogonal basis of a suitable Hilbert space. The unconventional use of the related weight function as a prefactor (moving weight approach) permits adaptivity and results in a generalization of the $\beta-$closure for bounded scalar quantities. We present the approximation procedure in detail and apply it to the evolution of the composition in a homogeneous well-stirred reactor. The extension to non-homogeneous flow simulations is straightforward.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...