Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-09
    Description: To approximate convolutions which occur in evolution equations with memory terms, a variable-stepsize algorithm is presented for which advancing $N$ steps requires only $O(N\log N)$ operations and $O(\log N)$ active memory, in place of $O(N^2)$ operations and $O(N)$ memory for a direct implementation. A basic feature of the fast algorithm is the reduction, via contour integral representations, to differential equations which are solved numerically with adaptive step sizes. Rather than the kernel itself, its Laplace transform is used in the algorithm. The algorithm is illustrated on three examples: a blow-up example originating from a Schrödinger equation with concentrated nonlinearity, chemical reactions with inhibited diffusion, and viscoelasticity with a fractional order constitutive law.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/postscript
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...