Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (5)
  • lamellar crystals  (3)
  • Apoptosis  (2)
Source
  • Articles: DFG German National Licenses  (5)
Material
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 279 (1995), S. 379-383 
    ISSN: 1432-0878
    Keywords: NADPH-diaphorase ; Myenteric plexus-Ileum ; Proximal colon ; Age ; Programmed cell survival and cell death ; Apoptosis ; Rat (Sprague Dawley)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The effect of age on the distribution of NADPH-diaphorase-containing neurones was investigated in the myenteric plexus of ileum and proximal colon of embryonic day-19 rats, as well as in rats at postnatal day 4, 6 months and 26 months. The mean percentage of NADPH-diaphorase-stained neurones per ganglion was established using protein gene product 9.5 (protein found in most if not all neurones)-immunostained neurones as 100%. The results revealed that there was a significant relative increase in NADPH-diaphorase-positive neurones with increasing age in the myenteric plexus of proximal colon with nearly all protein gene product 9.5-immunoreactive neurones staining for NADPH-diaphorase in 26-month-old rats. This was in marked contrast with the ileum, where no significant relative increase in NADPH-diaphorase-positive neurones was seen in aged rats. The implications of these findings in relation to programmed cell survival and cell death are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 279 (1995), S. 379-383 
    ISSN: 1432-0878
    Keywords: Key words: NADPH-diaphorase ; Myenteric plexus ; Ileum ; Proximal colon ; Age ; Programmed cell survival and cell death ; Apoptosis ; Rat (Sprague Dawley)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. The effect of age on the distribution of NADPH-diaphorase-containing neurones was investigated in the myenteric plexus of ileum and proximal colon of embryonic day-19 rats, as well as in rats at postnatal day 4, 6 months and 26 months. The mean percentage of NADPH-diaphorase-stained neurones per ganglion was established using protein gene product 9.5(protein found in most if not all neurones)-immunostained neu- rones as 100%. The results revealed that there was a significant relative increase in NADPH-diaphorase-positive neurones with increasing age in the myenteric plexus of proximal colon with nearly all protein gene product 9.5-immunoreactive neurones staining for NADPH-diaphorase in 26-month-old rats. This was in marked contrast with the ileum, where no significant relative increase in NADPH-diaphorase-positive neurones was seen in aged rats. The implications of these findings in relation to programmed cell survival and cell death are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1153-1165 
    ISSN: 0887-6266
    Keywords: even-odd nylons ; lamellar crystals ; structure ; hydrogen-bonding schemes ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Nylon 6 9 has been shown to have structures with interchain hydrogen bonds in both two and in three directions. Chain-folded lamellar crystals were studied using transmission electron microscopy and sedimented crystal mats and uniaxially oriented fibers studied by X-ray diffraction. The principal room-temperature structure shows the two characteristic (interchain) diffraction signals at spacings of 0.43 and 0.38 nm, typical of α-phase nylons; however, nylon 6 9 is unable to form the α-phase hydrogen-bonded sheets without serious distortion of the all-trans polymeric backbone. Our structure has c and c* noncoincident and two directions of hydrogen bonding. Optimum hydrogen bonding can only occur if consecutive pairs of amide units alternate between two crystallographic planes. The salient features of our model offer a possible universal solution for the crystalline state of all odd-even nylons. The nylon 6 9 room-temperature structure has a C-centered monoclinic unit cell (β = 108°) with the hydrogen bonds along the C-face diagonals; this structure bears a similarity to that recently proposed for nylons 6 5 and X3. On heating nylon 6 9 lamellar crystals and fibers, the two characteristic diffraction signals converge and meet at 0.42 nm at the Brill temperature, TB · TB for nylon 6 9 lamellar crystals is slightly below the melting point (Tm), whereas TB for nylon 6 9 fibers is ≅ 100°C below Tm. Above TB, nylon 6 9 has a hexagonal unit cell; the alkane segments exist in a mobile phase and equivalent hydrogen bonds populate the three principal (hexagonal) directions. A structure with perturbed hexagonal symmetry, which bears a resemblance to the reported γ-phase for nylons, can be obtained by quenching from the crystalline growth phase (above TB) to room temperature. We propose that this structure is a “quenched-in” perturbed form of the nylon 6 9 high-temperature hexagonal phase and has interchain hydrogen bonds in all three principal crystallographic directions. In this respect it differs importantly from the γ-phase models. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1153-1165, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 675-688 
    ISSN: 0887-6266
    Keywords: nylons ; lamellar crystals ; diffraction ; Brill transition temperatures ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Four members of the even-even nylon 2 Y series, for Y = 6, 8, 10, and 12, have been crystallized in the form of chain-folded lamellar single crystals from 1,4-butanediol and studied by transmission electron microscopy (imaging and diffraction), x-ray diffraction, and thermal analysis. The structures of these 2 Y nylons are different from those of nylon 6 6 and many other even-even nylons. At room temperature, two strong diffraction signals are observed at spacings 0.42 and 0.39 nm, respectively; these values differ from the 0.44 and 0.37 nm diffraction signals observed for nylon 6 6 and most even-even nylons at ambient temperature. Detailed analyses of the diffraction patterns show that all these 2 Y nylons have triclinic unit cells. The diamine alkane segments of 2 Y nylons are too short to sustain chain folds; thus, the chain folds must be in the diacid alkane segments in all cases. On heating the crystals from room temperature to the melt, the triclinic structures transform into pseudohexagonal structures and the two diffraction signals meet at the Brill transition temperature which occurs significantly below the melting point. The room temperature structures of these 2 Y nylons are similar to the unit cell of nylon 6 6 at elevated temperature, but below its Brill temperature. The room temperature structures and behavior on heating of the nylon 2 Y family is noticeably different from that of the even-even nylon X 4 family, although the only difference between these families of polyamides is the relative disposition of the amide groups within the chains. The results show that in order to understand the structure, behavior and properties of crystalline nylons, especially as a function of temperature, the detailed stereochemistry needs to be taken into account. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 675-688, 1997
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2401-2412 
    ISSN: 0887-6266
    Keywords: nylon 2 4 ; chain folding ; lamellar crystals ; structure and morphology ; crystallization ; electron microscopy ; Brill transformation ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Chain-folded lamellar crystals of nylon 2 4 have been prepared from dilute solution by addition of poor solvent. Two crystal structures are observed at room temperature: a monoclinic form I, precipitated at elevated temperature, and a less-defined, orthorhombic form II, precipitated at room temperature. The unit cell parameters for both forms are similar to those reported for its isomer, nylon 3. Nylon 2 4 form II is a liquid-crystal-like or disordered phase, consisting of hydrogen-bonded sheets in poor register in the hydrogen bond direction. Form I crystals have two characteristic interchain spacings of 0.41 nm and 0.39 nm at room temperature and on heating, exhibit a structural transformation and a Brill temperature (250°C) characteristic of many other even-even nylons. Nylon 2 4 is a member of the nylon 2 Y and nylon 2N 2(N+1) families, and the form I crystals show behavior commensurate with both. We propose they contain a proportion of intersheet hydrogen bonds at room temperature, similar to that for the nylon 2 Y family, and the short dimethylene alkane segments mean that the structure consists of hydrogen-bonded a-sheets, with an amide unit in each fold, similar to that of nylon 4 6. The fold geometry and sheet structure is compared with chain-folded apβ-sheet polypeptides and nylon 3. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2401-2412, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...