Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • Cation uptake  (1)
  • Elytrigia  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 74 (1987), S. 584-588 
    ISSN: 1432-2242
    Keywords: Triticum aestivum ; T. turgidum ; Aegilops squarrosa ; Cation uptake ; D genome
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary K/Na ratios have been determined in the leaves of salt-treated plants of 14 disomic substitution lines in which each of the D-genome chromosomes replaces the homoeologous A- or B-genome chromosome in the tetraploid wheat variety Langdon (AABB genome). Aneuploid lines of hexaploid bread wheat (cv Chinese Spring) having a reduced or an enhanced complement of chromosome 4D have also been examined. These investigations show that the gene(s) determining K/Na ratios in the leaves of wheat plants grown in the presence of salt is located on the long arm of chromosome 4D.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 89 (1985), S. 15-40 
    ISSN: 1573-5036
    Keywords: Elytrigia ; Epicuticular waxes ; Halophytes ; Leymus ; Potassium ; Roots ; Salt tolerance ; Shoots ; Sodium ; Transpiration ; Triticum ; Water use efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary In the first part of this review the main features of salt tolerance in higher plants are discussed. The hypothesis of intracellular compartmentation of solutes is used as a basis for models of tolerance mechanisms operating in roots and in leaves. Consideration is given to the implications of the various mechanisms for the yield potential of salt-tolerant crop plants. Some work on the more salt-tolerant members of the Triticeae is then described. The perennial speciesElytrigia juncea andLeymus sabulosus survive prolonged exposure to 250 mol m−3 NaCl, whereas the annual Triticum species are severely affected at only 100 mol m−3 NaCl. In the perennial species the tissue ion levels are controlled within narrow limits. In contrast, the more susceptible wheats accumulate far more sodium and chloride than is needed for osmotic adjustment, and the effects of salt stress increase with time of exposure. Two different types of salt tolerance are exhibited in plants capable of growing at high salinities. In succulent Chenopodiaceae, for example, osmotic adjustment is achieved mainly by accumulation of high levels of sodium and chloride in the shoots, accompanied by synthesis of substantial amounts of the compatible solute glycinebetaine. This combination of mechanisms allows high growth rates, in terms of both fresh and dry weight. At the opposite end of the spectrum of salt tolerance responses are the halophytic grasses, which strictly limit the influx of salts into the shoots, but suffer from very much reduced growth rates under saline conditions. Another variation is shown in those species that possess salt glands. The development and exploitation of crop plants for use on saline soils is discussed in relation to the implications of these various mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...