Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing
    Plant, cell & environment 5 (1982), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 150 (1980), S. 158-165 
    ISSN: 1432-2048
    Keywords: β-Dimethylsulphoniopropionate ; Osmoregulation ; Ion relations ; Salinity ; Ulva
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of hyper- and hypo-saline stresses on the levels of various inorganic and organic solutes inUlva lactuca have been recorded. Hypoosmotic stress decreased the tissue concentration of K+, Na+ and Cl- while hyper-osmotic stress caused a transient increase in Na+ and a stable accumulation of K+ and Cl-. The tissue content of β-dimethylsulphoniopropionate (β-dimethylpropiothetin) responded to changes in salinity. The time course of hypersaline stress showed the β-dimethylsulophoniopropionate concentration rose as the Na+ level fell. The levels of free sugars and amino acids, including proline, were relatively low in this alga and did not appear to be important in osmotic adjustment. The possibility that tertiary sulphonium dipolar ions have an analogous role in some algae to glycinebetaine and possibly other quaternary nitrogen compounds in higher plants as cytoplasmic osmotica is discussed briefly.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Ion transport ; Salinity (ion uptake) ; Salt tolerance (genetic trait) ; Triticum (salt tolerance)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The long arm of chromosome 4D of wheat (Triticum aestivum L.) contains a gene (or genes) which influences the ability of wheat plants to discriminate between Na+ and K+. This discrimination most obviously affects transport from the roots to the shoots, in which less Na+ and more K+ accumulate in those plants which contain the long arm of chromosome 4D. Concentrations of Na+ and K+ in the roots, and Cl− concentrations in the roots and shoots, are not significantly affected by this trait, but Na+, K+ and Cl− contents of the grain are reduced. The trait operates over a wide range of salinities and appears to be constitutive. At the moment it is not possible to determine accurately the effect of this trait on growth or grain yield because the aneuploid lines which are available are much less vigorous and less fertile than their euploid parents.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Planta 165 (1985), S. 392-396 
    ISSN: 1432-2048
    Keywords: Salt tolerance ; Osmotic adjustment ; Turgor ; Suaeda (salt tolerance)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Osmotic potentials and individual epidermal cell turgor pressures were measured in the leaves of seedlings of Suaeda maritima growing over a range of salinities. Leaf osmotic potentials were lower (more negative) the higher the salt concentration of the solution and were lowest in the youngest leaves and stem apices, producing a gradient of osmotic potential towards the apex of the plant. Epidermal cell turgor pressures were of the order of 0.25 to 0.3 MPa in the youngest leaves measured, decreasing to under 0.05 MPa for the oldest leaves. This pattern of turgor pressure was largely unaffected by external salinity. Calculation of leaf water potential indicated that the gradient between young leaves and the external medium was not altered by salinity, but with older leaves, however, this gradient diminished from being the same as that for young leaves in the absence of NaCl, to under 30% of this value at 400 mM NaCl. These results are discussed in relation to the growth response of S. maritima.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 89 (1985), S. 15-40 
    ISSN: 1573-5036
    Keywords: Elytrigia ; Epicuticular waxes ; Halophytes ; Leymus ; Potassium ; Roots ; Salt tolerance ; Shoots ; Sodium ; Transpiration ; Triticum ; Water use efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary In the first part of this review the main features of salt tolerance in higher plants are discussed. The hypothesis of intracellular compartmentation of solutes is used as a basis for models of tolerance mechanisms operating in roots and in leaves. Consideration is given to the implications of the various mechanisms for the yield potential of salt-tolerant crop plants. Some work on the more salt-tolerant members of the Triticeae is then described. The perennial speciesElytrigia juncea andLeymus sabulosus survive prolonged exposure to 250 mol m−3 NaCl, whereas the annual Triticum species are severely affected at only 100 mol m−3 NaCl. In the perennial species the tissue ion levels are controlled within narrow limits. In contrast, the more susceptible wheats accumulate far more sodium and chloride than is needed for osmotic adjustment, and the effects of salt stress increase with time of exposure. Two different types of salt tolerance are exhibited in plants capable of growing at high salinities. In succulent Chenopodiaceae, for example, osmotic adjustment is achieved mainly by accumulation of high levels of sodium and chloride in the shoots, accompanied by synthesis of substantial amounts of the compatible solute glycinebetaine. This combination of mechanisms allows high growth rates, in terms of both fresh and dry weight. At the opposite end of the spectrum of salt tolerance responses are the halophytic grasses, which strictly limit the influx of salts into the shoots, but suffer from very much reduced growth rates under saline conditions. Another variation is shown in those species that possess salt glands. The development and exploitation of crop plants for use on saline soils is discussed in relation to the implications of these various mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...