Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (18)
  • Colon  (9)
  • K+ conductance  (9)
Source
  • Articles: DFG German National Licenses  (18)
Material
Years
Keywords
  • 1
    ISSN: 1432-1440
    Keywords: Cystic fibrosis ; Cl- channel ; K+ channel ; Na+ channel ; Respiratory tract ; Colon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In most epithelia ion transport is tightly regulated. One major primary target of such regulation is the modulation of ion channels. The present brief review focuses on one specific example of ion channel regulation by the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR functions as a cAMP-regulated Cl- channel. Its defect leads to the variable clinical pictures of cystic fibrosis (CF), which today is understood as a primary defect of epithelial Cl- channels in a variety of tissues such as the respiratory tract, intestine, pancreas, skin, epididymis, fallopian tube, and others. Most recent findings suggest that CFTR also acts as a channel regulator. Three examples are discussed by which CFTR regulates other Cl- channels, K+ channels, and epithelial Na+ channels. From this perspective it is evident that CFTR may play a major role in the integration of cellular function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1440
    Keywords: Key words Cystic fibrosis ; Cl ; channel ; K+ channel ; Na+ channel ; Respiratory tract ; Colon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Abstract: In most epithelia ion transport is tightly regulated. One major primary target of such regulation is the modulation of ion channels. The present brief review focuses on one specific example of ion channel regulation by the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR functions as a cAMP-regulated Cl–channel. Its defect leads to the variable clinical pictures of cystic fibrosis (CF), which today is understood as a primary defect of epithelial Cl–channels in a variety of tissues such as the respiratory tract, intestine, pancreas, skin, epididymis, fallopian tube, and others. Most recent findings suggest that CFTR also acts as a channel regulator. Three examples are discussed by which CFTR regulates other Cl–channels, K+ channels, and epithelial Na+ channels. From this perspective it is evident that CFTR may play a major role in the integration of cellular function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2013
    Keywords: Proximal tubule ; Kidney ; K+ conductance ; Cell membrane potential ; Ouabain temperature ; Phlorizin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In isolated perfused segments of the mouse proximal tubule, the potential difference across the basolateral cell membrane (PDbl) was determined with conventional microelectrodes. Under control conditions with symmetrical solutions it amounted to −62±1 mV (n=118). The potential difference across the epithelium (PDte) was −1.7±0.1 mV (n=45). Transepithelial resistance amounted to 1.82±0.09 kΩ cm (n=28), corresponding to 11.4±0.6 Ω cm2. Increasing bath potassium concentration from 5 to 20 mmol/l depolarized PDbl by +24±1 mV (n=103), and PDte by +1.6±0.1 mV (n=19). Thus, the basolateral cell membrane is preferably conductive to potassium. Rapid cooling of the bath perfusate from 38°C to 10°C led to a transient hyperpolarization of PDbl from −60±1 to −65±1 mV (n=21) within 40 s followed by gradual depolarization by +18±1% (n=14) within 5 min. The transepithelial resistance increased significantly from 1.78±0.11 kΩ cm to 2.20±0.21 kΩ cm (n=15). Rapid rewarming of the bath to 38°C caused a depolarization from −61±2 mV (n=17) to −43±2 mV (n=16) within 15 s followed by a repolarization to −59±2 mV (n=10) within 40 s. Ouabain invariably depolarized PDbl. During both, sustained cooling or application of ouabain, the sensitivity of PDbl to bath potassium concentration decreased in parallel to PDbl pointing to a gradual decrease of potassium conductance. Phlorizin hyperpolarized the cell membrane from −59±2 to −66±1 mV (n=13), virtually abolished the transient hyperpolarization under cooling, and significantly reduced the depolarization after rewarming from +17±2 mV (n=16) to +9±3 mV (n=9). The present data indicate that the contribution of peritubular potassium conductance to the cell membrane conductance decreases following inhibition of basolateral (Na++K+)-ATPase. Apparently, cooling from 37° to 10°C does not only reduce (Na−+K+)-ATPase activity but in addition luminal sodium uptake mechanisms such as the sodium glucose cotransporter. As a result, cooling leads to an initial hyperpolarization of the cell followed by depolarization only after some delay.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 431 (1996), S. 419-426 
    ISSN: 1432-2013
    Keywords: Colon ; Triamterene ; Amiloride ; Na+ channel ; Cl− channel ; K+ channel ; Carbachol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Whole-cell patch-clamp studies were performed in isolated colonic crypts of rats pretreated with dexamethasone (6 mg/kg subcutaneously on 3 days consecutively prior to the experiment). The cells were divided into three categories according to their position along the crypt axis: surface cells (s.c.); mid-crypt cells (m.c.) and crypt base cells (b.c.). The zero-current membrane voltage (V m) was −56 ± 2 mV in s.c (n = 34); −76 ± 2 mV in M.C. (n = 47); and −87 ± 1 mV in b.c. (n = 87). The whole-cell conductance (G m) was similar (8–12 nS) in all three types of cells. A fractional K+ conductance accounting for 29–67% ofG m was present in all cell types. A Na+conductance was demonstrable in s.c. by the hyperpolarizing effect onV m of a low-Na+ (5 mmol/1) solution. In m.c. and b.c. the hyperpolarizing effect was much smaller, albeit significant. Amiloride had a concentration-dependent hyperpolarizing effect onV m in m.c. and even more so in s.c.. It reducedG m by approximately 12%. The dissociation constant (K D) was around 0.2 μmol/l. Triamterene had a comparable but not additive effect (K D = 30 μmol/l,n = 14). Forskolin (10 μmol/l, in order to enhance cytosolic adenosine 3′, 5′-cyclic monophosphate or CAMP) depolarizedV m in all three types of cells. The strongest effect was seen in b. c..G m was enhanced significantly in b.c. by 83% (forskolin) to 121% [8-(4-chlorophenylthio)cAMP]. The depolarization ofV m and increase inG m was caused to large extent by an increase in Cl− conductance as shown by the effect of a reduction in bath Cl− concentration from 145 to 32 mmol/1. This manocuvre hyperpolarizedV m under control conditions significantly by 6–9 mV in all three types of cells, whilst it depolarizedV m in the presence of forskolin in m.c. and in b.c.. These data indicate that s.c. of dexamethasone-treated rats possess mostly a K+ conductance and an amiloride- and Tramterene-inhibitable Na+ conductance. m.c. and b.c. possess little or no Na+ conductance; theirV m is largely determined by a K+ conductance. Forskolin (via cAMP) augments the Cl− conductance of m.c. and b.c. but has only a slight effect on s.c.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 421 (1992), S. 224-229 
    ISSN: 1432-2013
    Keywords: Cl− conductance ; HT29 ; P2 receptor ; Colon ; Cl− secretion ; cAMP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The colonic carcinoma cell line HT29 was used to examine the influence of agonists increasing cytosolic cAMP and Ca2+ activity on the conductances and the cell membrane voltage (V m). HT29 cells were grown on glass cover-slips. Cells were impaled by microelectrodes 4–10 days after seeding, when they had formed large plaques. In 181 impalements V m was −51±1 mV. An increase in bath K+ concentration from 3.6 mmol/l to 18.6 mmol/l or 0.5 mmol/l Ba2+ depolarized the cells by 10±1 mV (n=49) or by 9±2 mV (n=3), respectively. A decrease of bath Cl− concentration from 145 to 30 mmol/l depolarized the cells by 11±1 mV (n=24). Agents increasing intracellular cAMP such as isobutylmethylxanthine (0.1 mmol/l), forskolin (10 μmol/l) or isoprenaline (10 μmol/l) depolarized the cells by 6±1 (n=13), 15±3 (n=5) and 6±2 (n=3) mV, respectively. In hypoosmolar solutions (225 mosmol/l) cells depolarized by 9±1 mV (n=6). Purine and pyrimidine nucleotides depolarized the cells dose-dependently with the following potency sequence: UTP 〉 ATP 〉 ITP 〉 GTP 〉 TIP 〉 CTP = 0. The depolarization by ATP was stronger than that by ADP and adenosine. The muscarinic agonist carbachol led to a sustained depolarization by 27±6 mV (n=5) at 0.1 mmol/l, and to a transient depolarization by 12±4 mV (n=5) at 10 μmol/l. Neurotensin depolarized with a half-maximal effect at around 5 nmol/l. The depolarization induced by nucleotides and neurotensin was transient and followed by a hyperpolarization. We confirm that HT29 cells possess Cl−- and K+-conductive pathways. The Cl− conductance is regulated by intracellular cAMP level, cytosolic Ca2+ activity, and cell swelling. The K+ conductance in HT29 cells is regulated by intracellular Ca2+ activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2013
    Keywords: Vascular smooth muscle cell ; K+ conductance ; Big Ca2+-dependent K+ channel ; Patch clamp ; Verapamil ; Protein kinase C
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Vascular smooth muscle cells were obtained from rabbit aorta and were studied in primary culture on days 1–7 after seeding with electrophysiological techniques. In impalement experiments a mean membrane potential difference (PD) of −50±0.3 mV (n=387) was obtained with Ringer-type solution in the bath. PD was depolarized by 6±0.3 mV (n=45) and 16±2 mV (n= 5) when the bath K+ concentration was increased from the control value of 3.6 mmol/l to 13.6 and 23.6 mmol/l, respectively. Ba2+ (0.1–1 mmol/l) depolarized PD. Tetraethylammonium (TEA, 10 mmol/l) depolarized PD only slightly but significantly. Verapamil (0.1 mmol/l) and charybdotoxin (10 nmol/l) had no effect on PD. The conductance properties of these cells were further examined with the patch-clamp technique. K+ channels were spontaneously present in cell-attached patches. When the pipette was filled with 145 mmol/l KCl, a mean conductance (g K) of 209.6±4.6 mV (n=17) was read from the current/voltage curves at a clamp voltage (V c) of 0 mV. After excision K+ channels were found in 129 patches with inside-out and in 50 with outside-out configuration. With KCl on one and NaCl on the other side the mean g K at a V c of 0 mV was 134.6±3.9 pS (n=179). The mean permeability was 0.89±0.03×10−12 cm3/s. With symmetrical KCl solution the mean g K was 227±6 pS (n=17). The conductance sequence was g K≫ g Rb= g Cs=g Na=0. TEA blocked dose-dependently only from the outside.(1–10 mmol/l). Lidocaine (5 mmol/l) quinidine (0.01–1 mmol/l) and quinine (0.01–1 mmol/l) blocked from both sides. Charybdotoxin (0.5–5 nmol/l) blocked only from the extracellular side. Ba2+ blocked from the cytosolic side and the inhibition was increased by depolarization and reduced by hyperpolarization. At a V c of 0 mV a half-maximal inhibition (IC50) of 2 μmol/l was obtained. Verapamil and diltiazem blocked from both sides, verapamil with an IC50 of 2 μmol/l and diltiazem with an IC50 of 10 μmol/l. The open probability of this channel was increased by Ca2+ on the cytosolic side at activities 〉 0.1 μmol/l. Half-maximal activation occurred at Ca2+ activities exceeding 1 μmol/l. The present data indicate that the vascular smooth muscle cells of rabbit aorta in primary culture possess a K+ conductance. In excised patches only a maxi K+ channel was detected. This channel has properties different from the macroscopic K+ conductance. Hence, it is likely that the K+ conductance of the intact cell is dominated by yet another and thus far not detected K+ channel.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 424 (1993), S. 329-334 
    ISSN: 1432-2013
    Keywords: Exocytosis ; Membrane capacitance ; Cl− channel ; Cl− secretion ; Colon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Increases of cytosolic Ca2+, as occur with agonists such as ATP, neurotensin (NT), hypotonic cell swelling and ionomycin, enhance the membrane conductance (G M) and hence the input conductance (G I) of HT29 cells. In the present study we have examined whether these increases in G M are paralleled by exocytosis. To this end the membrane capacitance (C M) of HT29 cells was measured by patch clamp techniques. Two methods to monitor C M were used: a direct method (DM) and a phase tracking method (PTM). With the DM the following results were obtained. NT (10−8 mol/l, n=9) increased G M and C m significantly from 2.4±0.3 nS and 23.5±3 pF to 32±8 nS and 27.3±3.1 pF respectively. ATP (10−4 mol/l, n=29) had a very similar effect. G m and C m were increased from 5.7±1 nS and 36±4.4 pF to 111±21 nS and 44±5.4 pF respectively. Hypotonic cell swelling (160 mosmol/l, n=18) had a comparable effect: G M and C M were increased from 4.9±1 nS and 30±4.1 pF to 46±10 nS and 37±4.9 pF respectively. Ionomycin (10−7 mol/l, n=4) gave similar results. With the PTM it was possible to monitor the rapid changes in G M and C M, as they were induced by ATP (n=42) and NT (n=29), with high time resolution. The transient and instantaneous (〈 1 s) increases in G I (from 2.1±0.4 to 21.7±1.7 nS in the case of ATP, and from 2.3±0.4 to 26.6±3.1 nS in the case of NT) were closely paralleled by transient increases in C m (from 17.6±1.4 to 21.1±1.7 pF in the case of ATP, and from 20.6±2.3 to 24.3±2.6 pF in the case of NT). The present data indicate that transient (ATP, NT) or more stable (hypotonic cell swelling, ionomycin) increases in [Ca2+]i produce corresponding increments in G m and C M. The relative changes in both parameters correlate with each other. These findings are compatible with the view that exocytosis is related to the Ca2+-mediated control of Cl− conductance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 419 (1991), S. 76-83 
    ISSN: 1432-2013
    Keywords: Pancreas ; Ducts ; K+ conductance ; Barium ; Bicarbonate ; Cell membrane resistances ; Secretin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The aim of this study was to investigate the role of the K+ conductance in unstimulated and stimulated pancreatic ducts and to see how it is affected by provision of exogenous HCO 3 − /CO2. For this purpose we have applied electrophysiological techniques to perfused pancreatic ducts, which were dissected from rat pancreas. The basolateral membrane potential PDbl of unstimulated duct cells was between −60mV and −70mV, and the cells had a relatively large K+ conductance in the basolateral membrane as demonstrated by (a) 20–22 mV depolarization of PDbl in response to increase in bath K+ concentration from 5 mmol/l to 20mmol/l and (b) the effect of a K+ channel blocker, Ba2+ (5 mmol/l), which depolarized PDbl by 30–40mV. These effects on unstimulated ducts were relatively independent of bath HCO 3 − /CO2. The luminal membrane seemed to have no significant K+ conductance. Upon stimulation with secretin or dibutyryl cyclic AMP, PDbl depolarized to about −35 mV in the presence of HCO 3 − /CO2. Notably, the K+ conductance in the stimulated ducts was now only apparent in the presence of exogenous HCO 3 − /CO2 in the bath solutions. Upon addition of Ba2+, PDbl depolarized by 13±1 mV (n=7), the fractional resistance of the basolateral membrane, FRbl increased from 0.66 to 0.78 (n=6), the specific transepithelial resistance, R te, increased from 52±13 Ω cm2 to 59±15 Ω cm2 (n=11), and the whole-cell input resistance, R c, measured with double-barrelled electrodes, increased from 20 MΩ to 26 MΩ (n=3). These results are consistent with Ba2+ inhibition of the K+ conductance. Following removal of exogenous HCO 3 − /CO2 in the same ducts, stimulation led to a larger depolarization on PDbl to about −25 mV, and Ba2+ had a smaller effect on PDbl and no significant effect on the resistances. The individual resistances in the duct epithelium were estimated from equivalent circuit analysis. The luminal membrane resistance, R 1 decreased from about 2000 Ω cm2 to 80 Ω cm2 upon stimulation. The basolateral membrane resistance, R bl, remained at 90–120 Ω cm2, and the paracellular shunt resistance, R s, at 50–80 Ω cm2. Ba2+ increased R bl of stimulated ducts to about 200 Ω cm2, an effect present only if the ducts were provided with exogenous HCO 3 − /CO2. Taken together, the present results indicate that the basolateral K+ conductance of pancreatic ducts is sensitive to exogenous HCO 3 − /CO2, i.e. without HCO 3 − /CO2 the conductance becomes very low although the ducts are undergoing stimulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2013
    Keywords: Colon ; Rabbit ; NPPB ; Chloride channel blockers ; Chloride secretion ; Secretory diarrhoea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Arylaminobenzoates were examined in rabbit colon mounted in an Ussing chamber. The open-circuit transepithelial voltage (V te) and resistance (R te) were measured and the equivalent short-circuit current (I SC=V te/ R te) was calculated. After serosal (s) and mucosal (m) addition of indomethacin (1 μmol/l) I SC was −71±11 (n = 118) μA/cm2. Amiloride (0.1 mmol/l, m) inhibited this current and reversed the polarity to + 32±4 (n=118) μA/cm2. In the presence of amiloride and indomethacin, prostaglandin E2 (1 μmol/l, s), known to induce Cl− secretion, generated an I SC of -143 ± 8 (n = 92) μA/cm2. The arylaminobenzoate and Cl− channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) reduced I SC reversibly with a half-maximal inhibition (IC50) at approximately 0.35 mmol/l and 0.2 mmol/l for mucosal and serosal application respectively. To test whether the poor effect was caused by mucus covering the luminal surface, dose/response curves of the mucosal effect were repeated after several pretreatments. Acidic pH on the mucosal side reduced IC50 to approximately 0.1 mmol/l. A similar effect was observed after N-acetyl-l-cysteine (m) preincubation. Pretreatment with N-acetyl-l-cysteine (m) and carbachol (s), in order to exhaust mucus secretion, and l-homocysteine (m) were more effective and reduced IC50 to approximately 50 μmol/l. To test whether this effect of NPPB was caused by non-specific effects, the two enantiomers of 5-nitro-2-(+/−1-phenylethylamino)-benzoate were tested of which only the (+) form inhibited the Cl− conductance in the thick ascending limb of the loop of Henle (TAL). In the present study the (+) enantiomer inhibited significantly more strongly than the (−) form. This suggests that the inhibitory effect of NPPB, even though it requires rather high concentrations, is probably due to Cl− channel inhibition. For other arylaminobenzoates the sequence of potencies was different from that determined for the TAL. The present data indicate that substances that have been designed to block the Cl− conductance of the TAL segment also inhibit reversibly but with much lower affinity the PGE2-induced Cl− secretion in rabbit colon.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 429 (1995), S. 682-690 
    ISSN: 1432-2013
    Keywords: Cl− conductance ; K+ conductance ; Brefeldin A ; Cytochalasin D ; Epithelial cells ; Actin ; Microtubules
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Activation of Cl− and K+ channels is necessary to drive ion secretion in epithelia. There is substantial evidence from previous reports that vesicular transport and exocytosis are involved in the regulation of ion channels. In the present study we examined the role of cytoskeletal elements and components of intracellular vesicle transport on ion channel activation in bronchial epithelial cells. To this end, cells were incubated with a number of different compounds which interact with either microtubules or actin microfilaments, or which interfere with vesicle transport in the Golgi apparatus. The effectiveness of these agents was verified by fluorescence staining of cellular microtubules and actin. The function was examined in 36Cl− efflux studies as well as in whole-cell (WC) patch-clamp and cell-attached studies. The cells were studied under control conditions and after exposure to (in mmol/l) ATP (0.1), forskolin (0.01), histamine (0.01) and hypotonic bath solution (HBS, NaCl 72.5). In untreated control cells, ATP primarily activated a K+ conductance whilst histamine and forskolin induced mainly a Cl− conductance. HBS activated both K+ and Cl− conductances. Incubation of the cells with brefeldin A (up to 100 μmol/l) did not inhibit WC current activation and 36Cl− efflux. Nocodazole (up to 170 μmol/l) reduced the ATP-induced WC current, and mevastatin (up to 100 μmol/l) the cell-swelling-induced WC current. Neither had any effect on the WC current induced by forskolin and histamine. Also 36Cl− efflux induced by HBS, ATP, forskolin and histamine was unaltered by these compounds. Similarly, colchicine (10 μmol/l) and taxol (6 μmol/l) affected neither 36Cl− efflux nor WC current induced by ATP, forskolin, histamine or HBS. In contrast, depolymerisation of actin by cytochalasin D (10 μmol/l) significantly attenuated 36Cl− effluxes and WC current activation by the above-mentioned agonists. Incubation with a C2 clostridial toxin (5 nmol/l) showed similar effects on WC currents. Moreover, when cytochalasin D (10 μmol/l), C2 clostridial toxins (5 nmol/l), or phalloidin (10 μmol/l) were added to the pipette filling solution current activation was markedly reduced. However, in excised inside-out membrane patches, cytochalasin D (10 μmol/l), G-actin (10 μmol/l) and phalloidin (10 μmol/l) had no effect. These data suggest that actin participates in the activation of ion channels in 16HBE14o- epithelial cells and support the concept that exocytosis is a crucial step in the regulation of Cl− and K+ channels in these cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...