Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (3)
  • lipoperoxidation  (2)
  • DNA  (1)
Source
  • Articles: DFG German National Licenses  (3)
Material
Years
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biophysical Chemistry 40 (1991), S. 223-229 
    ISSN: 0301-4622
    Keywords: DAPI ; DNA ; Fluorescence ; Time-resolved fluorescence ; ground-state heterogeneity
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6822
    Keywords: DNA cleavage ; free radical ; lipoperoxidation ; L-propionylcarnitine ; scavenging activity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract L-Propionylcarnitine, a propionyl ester of L-carnitine, increases the intracellular pool of L-carnitine. It exhibits a high affinity for the enzyme carnitine acetyltransferase (CAT) and, thus, is readily converted into propionyl-coenzyme A and free carnitine. It has been reported that L-propionylcarnitine possesses a protective action against heart ischemia–reperfusion injury; however, the antioxidant mechanism is not yet clear. L-Propionylcarnitine might reduce the hydroxyl radical production in the Fenton system, by chelating the iron required for the generation of hydroxyl radicals. To obtain a better insight into the antiradical mechanism of L-propionylcarnitine, the present research analyzed the superoxide scavenging capacity of L-propionylcarnitine and its effect on linoleic acid peroxidation. In addition, the effect of L-propionylcarnitine against DNA cleavage was estimated using pBR322 plasmid. We found that L-propionylcarnitine showed a dose-dependent free-radical scavenging activity. In fact, it was able to scavenge superoxide anion, to inhibit the lipoperoxidation of linoleic acid, and to protect pBR322 DNA from cleavage induced by H2O2 UV-photolysis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-6822
    Keywords: DNA cleavage ; flavonoids ; free radicals ; lipoperoxidation ; xanthine oxidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Flavonoids have recently aroused considerable interest because of their broad pharmacological activity. In fact, flavonoids have been reported to have antiviral, antiallergic, antiplatelet, anti-inflammatory and antitumoral activities. The pharmacological properties of bioflavonoids have been ascribed both to the concomitant inhibition of enzymes involved in the production of free radicals and to their free-radical scavenging and iron chelating capacity. However the antioxidant capacity of bioflavonoids due to free-radical scavenging and/or to iron chelating is still controversial. In this study, we have investigated the free-radical scavenging capacity of bioflavonoids (rutin, catechin, and naringin). In addition, the effects of these polyphenols on xanthine oxidase activity, spontaneous lipid peroxidation, and DNA cleavage were investigated. The bioflavonoids under examination showed a dose-dependent free-radical scavenging effect, a significant inhibition of xanthine oxidase activity, and an antilipoperoxidative capacity. In addition, they showed a protective effect on DNA cleavage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...