Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (3)
  • Slice preparations  (2)
  • GABA  (1)
  • 1
    ISSN: 1432-1106
    Keywords: Optical response ; Neostriatal slice ; GABA ; Glutamate ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Effects of GABA and glutamate antagonists as well as dopamine agonists and antagonists on the optical responses of neostriatal (Str) slices to local electrical stimulation were examined using a voltage-sensitive dye and a high-speed image sensor. A single local stimulation applied to the Str slices evoked optical responses lasting for 40–80 ms and propagating in every direction up to about 1.5 mm. Bath application of bicuculline methiodide increased the intensity and duration of optical responses, while their spatial response patterns were unchanged. Bath application of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) greatly reduced the late part of responses occurring about 4 ms after stimulation, but the early part of responses was unaffected by CNQX. The early part of the response was eliminated by application of tetrodotoxin. Bath application of N-methyl-D-aspartate antagonists, 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid and 2-amino-5-phosphonovaleric acid resulted in only small changes in the optical responses. Bath application of D1 agonist 6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5,-tetrahydro-1H-3-benzazepine hydrobromide consistently increased the intensity but decreased the speed of propagation and duration of the optical reponse. Bath application of D2 agonist quinpirole had no effect on the optical response. D1 antagonist SCH 23390 and D2antagonist sulpiride also failed to change optical responses. These results indicate that the early part of the reponse is due to direct activation of the neuronal elements by electrical stimulation, while the late part of the response is due mainly to glutamatergic ex-citatory postsynaptic potentials (EPSPs) mediated by α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate receptors. This study also suggests that dopamine may modulate AMPA/kainate responses through D1 receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 60 (1985), S. 54-62 
    ISSN: 1432-1106
    Keywords: Membrane properties ; Rat neostriatal neurons ; Slice preparations ; Intracellular study
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The active membrane properties of rat neostriatal neurons have been studied in an in vitro slice preparation. All the neurons examined had resting membrane potentials of more than 50 mV and generated action potentials with amplitudes exceeding 70 mV. The morphological characteristics of the neurons identified by intracellular labeling with HRP indicated that they were medium spiny neurons. 1. Depolarizing current injection through the recording microelectrode generated slow depolarizing potentials and repetitive action potentials with frequencies ranging from less than 10 Hz to over 300 Hz. Adaptation of action potentials was observed when long duration depolarizing current was injected. 2. Depolarizing current injections revealed that the membrane of the striatal neuron had an anomalous rectification when the membrane potential was depolarized to the resting potential. A possible bases for the anomalous rectification might involve inactivation of K-conductance and slow inward Ca- and/or Na-currents. 3. Local electrical stimulation evoked depolarizing postsynaptic potentials (DPSPs) followed by long-lasting small depolarizations. In a double stimulation test, a potentiation of the test DPSP was observed at interstimulus time interval of up to 80 ms. Post-tetanic potentiation of DPSPs was also seen in these neurons. 4. Tests utilizing depolarizing current injection, intracellular Cl− injection, and Cl-conductance blocking drugs indicated that the DPSPs were composed of EPSPs and overlapping IPSPs. 5. The nature of the longlasting small depolarization succeeding the DPSPs could not be conclusively determined. However, available data suggest that the slow inward Cacurrent may be responsible for this response. 6. In some neurons, antidromic responses were observed following local stimulation. Spike invasion into the somatic region was blocked by an injection of hyperpolarizing current to the neuron or by synaptic inputs evoked by conditioning local stimulation. These findings may explain the difficulties encountered by previous investigators in obtaining antidromic responses from neostriatal neurons in in vivo preparation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 60 (1985), S. 63-70 
    ISSN: 1432-1106
    Keywords: Regenerative potentials ; Rat striatal neurons ; Slice preparations ; Intracellular study
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Regenerative potentials in rat neostriatal neurons were studied using the in vitro slice preparation. Some of the recorded neurons were intracellularly labeled with HRP. All had the morphological characteristics of the medium spiny neuron. 2. Application of TTX (10−5 g/ml) to the superfusing medium abolished fast action potentials generated by intracellularly injected depolarizing current. Application of TEA prolonged the spike duration by decreasing its repolarizing rate without affecting rising phase. After suppression of K-conductance by TEA, depolarizing current elicited both fast and slow all or none action potentials. 3. Combined treatment with TTX and TEA revealed two types of depolarizing potentials, a slowly rising graded depolarizing potential and slow action potential. Substitution of Ca++ with Mg++ in the medium diminished the amplitude of these potentials. They were also blocked by application of Co++ into the superfusion medium. The duration of slow action potentials were increased (1) with increase in the intensity of current pulse, (2) with decrease in the resting membrane potential, and (3) with increase in the concentration of TEA in the bathing medium. 4. In the normal Ringer solution, local stimulation elicited depolarizing postsynaptic responses (DPSPs). Large DPSPs evoked by strong local stimulation triggered one or two fast action potentials. In some neurons, large DPSPs could trigger both fast and slow action potentials. They were consistently triggered after application of TEA (1 mM) to the medium. 5. When a relatively high concentration of TEA (4 mM) was applied to the Ringer solution, locally evoked DPSPs could trigger only slow action potentials. In double stimulation experiments, a large reduction in the amplitude and the duration of test DPSPs was observed up to about 150 ms interstimulus interval.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...