Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (5)
  • glycation  (3)
  • Physical Chemistry  (2)
  • 1
    ISSN: 1432-0428
    Keywords: Key words Diabetic retinopathy ; rat model ; aminoguanidine ; glycation ; retinal basement membrane.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We have previously shown that long-term administration of aminoguanidine, an inhibitor of advanced glycosylation product formation, reduces the extent of experimental diabetic retinopathy in the rat by 85 %. In order to determine whether the residual retinopathy that developed despite aminoguanidine was attributable to advanced glycation endproduct formation, a time-course study was performed in three different groups of male Wistar rats: non-diabetic controls (NC), streptozotocin-diabetic controls (DC) and streptozotocin-diabetic rats treated with aminoguanidine HCL, 50 mg/100 ml drinking water (D-AG). Eyes were obtained at 24, 32, 44 and 56 weeks of diabetes/treatment duration and morphologic evaluation was done on retinal digest preparations. At 56 weeks, retinal basement membrane thickness was additionally measured. After 24 weeks of diabetes, the number of acellular capillaries was significantly elevated in DC (44.6 ± 5.7/mm2 of retinal area, NC 19.6 ± 4.9; p 〈 0.001) and increased continuously over time (DC 56 weeks 87.4 ± 15.1; p 〈 0.001 vs DC 24 weeks). In contrast, acellular capillaries in D-AG increased over the first 24 weeks and then remained constant for the rest of the study (D-AG 24 weeks 35.7 ± 5.18; p 〈 0.01 vs NC 24 weeks and NS vs DC 24 weeks; D-AG 56 weeks 42.0 ± 6.20; p NS vs D-AG 24 weeks). Diabetes-associated pericyte loss (DC 24 weeks 2310 ± 170/mm2 of capillary area; NC 24 weeks 3120 ± 190; p 〈 0.001; DC 56 weeks 1570 ± 230; NC 56 weeks 2960 ± 50; p 〈 0.001) was significantly prevented by aminoguanidine after diabetic-like changes over the initial 24 weeks (D-AG 24 weeks 2450 ± 75; p NS vs DC 24 weeks; D-AG 56 weeks 2350 ± 90; p 〈 0.001 vs DC 56 weeks). At 56 weeks, aminoguanidine treatment was associated with a 67.4 % reduction in retinal basement membrane thickening. This time-course study demonstrates that aminoguanidine prevents the progression of experimental diabetic retinopathy, and suggests that non AG-inhibitable mechanisms are involved in the initial phase of diabetic retinopathy. [Diabetologia (1995) 38: 269–273]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Diabetic retinopathy ; rat model ; aminoguanidine ; glycation ; retinal basement membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We have previously shown that long-term administration of aminoguanidine, an inhibitor of advanced glycosylation product formation, reduces the extent of experimental diabetic retinopathy in the rat by 85%. In order to determine whether the residual retinopathy that developed despite aminoguanidine was attributable to advanced glycation endproduct formation, a time-course study was performed in three different groups of male Wistar rats: non-diabetic controls (NC), streptozotocin-diabetic controls (DC) and streptozotocin-diabetic rats treated with aminoguanidine HCL, 50 mg/100 ml drinking water (D-AG). Eyes were obtained at 24, 32, 44 and 56 weeks of diabetes/treatment duration and morphologic evaluation was done on retinal digest preparations. At 56 weeks, retinal basement membrane thickness was additionally measured. After 24 weeks of diabetes, the number of acellular capillaries was significantly elevated in DC (44.6±5.7/mm2 of retinal area, NC 19.6±4.9; p〈0.001) and increased continuously over time (DC 56 weeks 87.4±15.1; p〈0.001 vs DC 24 weeks). In contrast, acellular capillaries in D-AG increased over the first 24 weeks and then remained constant for the rest of the study (D-AG 24 weeks 35.7±5.18; p〈0.01 vs NC 24 weeks and NS vs DC 24 weeks; D-AG 56 weeks 42.0±6.20; p NS vs D-AG 24 weeks). Diabetes-associated pericyte loss (DC 24 weeks 2310±170/mm2 of capillary area; NC 24 weeks 3120±190; p〈0.001; DC 56 weeks 1570±230; NC 56 weeks 2960±50; p〈0.001) was significantly prevented by aminoguanidine after diabetic-like changes over the initial 24 weeks (D-AG 24 weeks 2450±75; p NS vs DC 24 weeks; D-AG 56 weeks 2350±90; p〈0.001 vs DC 56 weeks). At 56 weeks, aminoguanidine treatment was associated with a 67.4% reduction in retinal basement membrane thickening. This time-course study demonstrates that aminoguanidine prevents the progression of experimental diabetic retinopathy, and suggests that non AG-inhibitable mechanisms are involved in the initial phase of diabetic retinopathy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Glycoconjugate journal 12 (1995), S. 618-621 
    ISSN: 1573-4986
    Keywords: glycation ; lens proteins ; diabetes ; ageing ; cataract
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Glycation (nonenzymatic glycosylation) in the human lens (cortex and nucleus) in senile (nondiabetic) and diabetic cataracts was studied by measuring the extent of early and late glycation products, the content of free ε-amino groups and the formation of disulfide bonds in the soluble lens proteins. There was a significant (p〈0.001) increase in early and late glycation in the lens nucleus compared to the cortex in both the senile and diabetic groups. Overall these changes were much larger in the diabetic group. The concentration of free ε-amino groups was decreased in the senile nucleus as well as in the diabetic nucleus when compared with the senile and diabetic cortex (p〈0.001). Disulfide bond content was in the order of diabetic nucleus 〉 diabetic cortex 〉 senile nucleus 〉 senile cortex. Glycation of the lens proteins is a generalized feature which is enhanced in the diabetic lens compared to senile lens proteins and is associated with a decrease in free ε-amino groups and an increase in disulfide bonds formation in the lens proteins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 28 (1996), S. 705-711 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Dioxotetracyanomolybdate(IV) has been found to form a 1 : 2 complex with 2,2′-bipyridyl. The kinetics of the reaction has been studied over the pH range 5.3-8.7 by visible spectrophotometry under pseudo conditions. The effect of the 2,2′-bipyridyl and dioxotetracyanomolybdate(IV), temperature, ionic strength, and pH on the reaction rate was determined. The reaction follows first-order kinetics with respect to dioxotetracyanomolybdate(IV) ion and fractional-order kinetics with respect to 2,2′-bipyridyl. Values for the outer-sphere complex formation constant (Kos2) and rate constants (k2) were also calculated from the kinetic data. It was found that rate of the reaction increases with the decreasing pH. The following rate equation based on the outersphere complexation equilibrium preceding the associative interchange has been derived.\documentclass{article}\pagestyle{empty}\begin{document}$$\rm {{1}\over{{\it k}_{obs}}}={{1+K_{a2}[H^+]}\over{B_1[2,2\prime-bipyridyl]}}+B_2$$ ${\rm where}$ $\rm B_1={\it k}_1K_{os1}+{\it k}_2K_{os2}[H^+]K_{a2}$ ${\rm and}$ $\rm B_2={{K_{os1}+K_{a2}K_{os2}[H^+]}\over {{\it k}_1K_{os1}+{\it k}_2K_{os2}[H^+]K_{a2}}}.$\end{document}On the basis of the observed results probable mechanism has been proposed. © 1996 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 29 (1997), S. 819-824 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: An investigation is presented on the kinetics of complexation of aqueous solution of octacyanomolybdate (IV) and -tungstate (IV) after photoinitiation with one of the mixed group ligands containing both N and O, diethanolamine (DEOA), [NH(CH2CH2OH)2]. Under the steady state conditions and with approximation k3 〉 k4 over a range of concentrations, the observed rate law is:\documentclass{article}\pagestyle{empty}\begin{document}$$ \cal{k}_{\rm obs.}={\cal{k}_{2}\cal{k}_{4}\rm {I}_{a}[\rm {OH}^{-}][\rm {NH}(\rm{CH}_{2}\rm{CH}_{2}\rm{OH})_{2}]\over \rm{I}+\it \cal{k}_{2}[\rm {OH}^{-}]} $$\end{document}The complexes show shift in electronic transition supporting the mechanism of association of the ligand followed by the abstraction of some small molecules and then substitution by the ligand. The presence of the specific isobestic point also contributes towards the stability of the complex. The rate constant and quantum yield values are dependent on both the concentration of the metal cyanide and the ligand predicting the mechanism to be an associative one. The complexes have strong absorption in the visible range and are assigned metal-to-ligand electron transfer transition. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 819-824, 1997
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...