Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Opus Repository ZIB  (11)
  • 2005-2009  (1)
  • 1995-1999  (10)
  • ddc:000  (11)
Source
  • Opus Repository ZIB  (11)
Years
Year
Keywords
  • ddc:000  (11)
Language
  • 1
    Publication Date: 2014-02-26
    Description: A numerical method for the treatment of moving discontinuities in the model equations of chemical engineering systems is presented. The derived model describing the effects of condensation and evaporation in a regenerative air to air heat exchanger yields an illustrative example for these so called moving boundary problems. The presented adaptive moving grid method is based on the algorithm {\sc Pdex} for parabolic partial differential equations. It is shown that the method is suited for problems where the arising discontinuities cause low rates of convergence if the equations are solved with a static grid.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-03-06
    Description: In diesem Handbuch werden die Bausteine zum Aufbau einer graphischen Benutzeroberfläche mit {\tt ZGUI} beschrieben. Auf der einen Seite stehen die Tcl/Tk--Prozeduren, die die graphischen Elemente definieren. Die Beschreibung der Anwendung der Prozeduren und der Interaktionen der Elemente bildet den ersten Teil des Handbuches. Auf der anderen Seite stehen die Anforderungen an Anwendungen, die mit einer {\tt ZGUI}--Benutzeroberlfäche gesteuert werden sollen. Hier findet man im Handbuch die Beschreibung der Anwendungsprogrammierschnittstelle (application programming interface, API).
    Keywords: ddc:000
    Language: German
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-26
    Description: We present parallel formulations of the well established extrapolation algorithms EULSIM and LIMEX and its implementation on a distributed memory architecture. The discretization of partial differential equations by the method of lines yields large banded systems, which can be efficiently solved in parallel only by iterative methods. Polynomial preconditioning with a Neumann series expansion combined with an overlapping domain decomposition appears as a very efficient, robust and highly scalable preconditioner for different iterative solvers. A further advantage of this preconditioner is that all computation can be restricted to the overlap region as long as the subdomain problems are solved exactly. With this approach the iterative algorithms operate on very short vectors, the length of the vectors depends only on the number of gridpoints in the overlap region and the number of processors, but not on the size of the linear system. As the most reliable and fast iterative methods based on this preconditioning scheme appeared GMRES or FOM and BICGSTAB. To further reduce the number of iterations in GMRES or FOM we can reuse the Krylov-spaces constructed in preceeding extrapolation steps. The implementation of the method within the program LIMEX results in a highly parallel and scalable program for solving differential algebraic problems getting an almost linear speedup up to 64 processors even for medium size problems. Results are presented for a difficult application from chemical engineering simulating the formation of aerosols in industrial gas exhaust purification.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-02-26
    Description: Dynamical simulation of industrially relevant processes strongly advises the use of algorithms, which are {\em adaptive} both in time and in space discretization. The paper presents two alternatives: (a) a fully adaptive method of lines approach, which is based on finite difference methods and essentially applicable to 1D problems; (b) a fully adaptive Rothe method, which is based on a fast multilevel finite element method and applicable to 1D up to 3D.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-03-06
    Description: Der Entwurf und die Implementierung des auf Tcl/Tk basierenden Werkzeugkastens ZGUI wird beschrieben und an einigen Beispielen erläutert. ZGUI unterstützt die Entwicklung einer graphischen Benutzeroberfläche (GUI) für die am ZIB erstellte numerische Software. Es sollen folgende Ziele erreicht werden: \begin{itemize} \item einfaches Ausprobieren anhand vordefinierter Testprobleme,\vspace*{-2mm} \item Kennenlernen numerischer Steuergrö\ss en und Verfahrensvarianten,\vspace*{-2mm} \item einfache Eingabe neuer Probleme,\vspace*{-2mm} \item einfache Nutzung graphischer Ausgabemöglichkeiten und\vspace*{-2mm} \item einheitliche Darstellung gleicher oder ähnlicher Optionen. \end{itemize}
    Keywords: ddc:000
    Language: German
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-26
    Description: For the simulation of one-dimensional flame configurations reliabl e numerical tools are needed which have to be both highly efficient (large num ber of parametric calculations) and at the same time accurate (in order t o avoid numerical errors). This can only be accomplished using fully adapt ive discretization techniques both in space and time together with a c ontrol of the discretization error. We present a method which accomplishes this task. It is based on a n adative MOL (method of lines) treatment. Space discretization is done by means of finite difference approxi mations on non-uniform grids. Time is discretized by the linearly-implicit Euler method. In order to control the discretization errors an extrapolation pro cedure is used in space and time. Results are presented for simple laser-induced ignition processes. The method, however, can be applied to other combustion processes, too.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-02-26
    Description: A fully adaptive method is presented for the numerical solution of highly nonlinear, coupled systems of parabolic differential equations in one space dimension. Time discretization is by means of the linearly--implicit Euler discretization. Space discretization is by finite differences on non--uniform grids. Both basic discretizations are combined with extrapolation. Based on local error estimates for both the time and the space discretization error, the accuracy of the numerical approximation is controlled and the discretization stepsizes are adapted automatically and simultaneously. The algorithm is implemented in a user friendly software package, PDEX1M. To be a powerful tool for users coming from applications the package has been equipped with some additional useful devices.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-02-26
    Description: We study the parallelization of linearly--implicit extrapolation methods for the solution of large scale systems of differential algebraic equations arising in a method of lines (MOL ) treatment of partial differential equations. In our approach we combine a slightly overlapping domain decomposi tion together with a polynomial block Neumann preconditioner. Through the explicit computation of the matrix products of the pre conditioner and the system matrix a significant gain in overall efficiency is achieved for medium--sized problems. The parallel algorithm exhibits a good scalability up to 32 proces sors on a Cray T3E. Preliminary results for computations on a workstation cluster are reported.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-02-26
    Description: We study the parallelization of linearly--implicit extrapolation codes for the solution of large scale PDE systems and differential algebraic equations on distributed memory machines. The main advantage of these algorithms is that they enable adapativity both in time and space. Additive Krylov--Schwarz methods yield high parallel perfomance for such extrapolation methods. Our approach combines a slightly overlapping domain decomposition together with a polynomial block Neumann preconditioner and a reduced system technique. Furthermore we get important advantages through the explicit computation of the matrix--products of the preconditioner and the matrix of the linear system. The parallel algorithms exhibit scalability up to 64 processors already for medium--sized test problems. We show that the codes are really efficient in large application systems for chemical engineering problems.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-02-26
    Description: Benchmarking of ODE methods has a long tradition. Several sets of test problems have been developed and new problems are still collected. So, a whole variety of problems can be used to check the efficiency of a method under investigation. In general, efficiency is measured by the amount of work whi ch is necessary to get a reliable solution for a prescribed accura cy. In order to quantify the term ``amount of work'' usually not only the computing time is measured but also the number of calls of functional units. To quantify the term ``quality of a numerical solution'' usually the $l_2$--norm of the true error at the final point of the integration interval is used. In our contribution we first discuss some general aspects of benchmarking. Then we present a new test frame which allows to solve typical benchmark problems with some of the state of the art integrators within a unified framework. Finally we show some results of our benchmark tests. Part of the test frame can be used interactively in the World Wide Web.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...