Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (1)
  • 1985-1989  (1)
  • 1987  (1)
Material
  • Electronic Resource  (1)
Years
  • 1985-1989  (1)
Year
  • 1
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Specimens of a stainless steel (20%Cr, 25%Ni stabilized with niobium and also containing 0.9% Mn and 0.6% Si) implanted with lanthanum to a dose of 1017 ion cm−2 , together with unimplanted specimens, have been oxidized in carbon dioxide at 825° C for times up to 9735 h. Transverse sections through the oxide scales formed on the respective specimens have been studied by analytical electron microscopy. After this exposure the scale on the unimplanted 20/25/Nb stainless steel consists of an outer, large-grained, spinel layer, a middle fine-grained Cr2O3 layer and an inner, discontinuous silicon rich, niobium and chromium bearing, amorphous layer. The main effects of the lanthanum implantation are to improve oxidation resistance and maintain scale adherence during thermal cycling. The microstructural changes in the scale formed on the lanthanum implanted 20/25/Nb steel include finer Cr2O3 oxide grains and an intermediate region between the outer spinel and inner Cr2O3 layers comprised of both oxides. The lanthanum concentrates in this region and appears to act as a marker due to its low diffusivity. Mechanisms of scale development on the 20/25/Nb stainless Red and the influence of lanthanum implantation are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...