Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (6)
  • Genetics  (2)
  • folding units  (2)
  • Antiparallel ORFs  (1)
  • CASP2  (1)
  • 1
    ISSN: 1432-1432
    Keywords: Gene structure ; Heat shock ; hsp70 ; Antiparallel ORFs ; Drosophila
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A clone isolated from a Drosophila auraria heat-shock cDNA library presents two long, antiparallel, coupled (LAC) open reading frames (ORFs). One strand ORF is 1,929 nucleotides long and exhibits great identity (87.5% at the nucleotide level and 94% at the amino acid level) with the hsp70 gene copies of D. melanogaster, while the second strand ORF, in antiparallel in-frame register arrangement, is 1,839 nucleotides long and exhibits 32% identity with a putative, recently identified, NAD+-dependent glutamate dehydrogenase (NAD+-GDH). The overlap of the two ORFs is 1,824 nucleotides long. Computational analysis shows that this LAC ORF arrangement is conserved in other hsp70 loci in a wide range of organisms, raising questions about possible evolutionary benefits of such a peculiar genomic organization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 134-139 
    ISSN: 0887-3585
    Keywords: CASP2 ; fold-recognition ; HMM ; structure library ; remote homology ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We discuss how methods based on hidden Markov models performed in the fold-recognition section of the CASP2 experiment. Hidden Markov models were built for a representative set of just over 1,000 structures from the Protein Data Bank (PDB). Each CASP2 target sequence was scored against this library of HMMs. In addition, an HMM was built for each of the target sequences and all of the sequences in PDB were scored against that target model, with a good score on both methods indicating a high probability that the target sequence is homologous to the structure. The method worked well in comparison to other methods used at CASP2 for targets of moderate difficulty, where the closest structure in PDB could be aligned to the target with at least 15% residue identity. Proteins, Suppl. 1:134-139, 1997. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 9 (1991), S. 56-68 
    ISSN: 0887-3585
    Keywords: secondary structure ; tertiary structure ; residue conservation ; sequence variability ; sequence profile ; folding units ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The database of known protein three-dimensional structures can be significantly increased by the use of sequence homology, based on the following observations. (1) The database of known sequences, currently at more than 12,000 proteins, is two orders of magnitude larger than the database of known structures. (2) The currently most powerful method of predicting protein structures is model building by homology. (3) Structural homology can be inferred from the level of sequence similarity. (4) The threshold of sequence similarity sufficient for structural homology depends strongly on the length of the alignment. Here, we first quantify the relation between sequence similarity, structure similarity, and alignment length by an exhaustive survey of alignments between proteins of known structure and report a homology threshold curve as a function of alignment length. We then produce a database of homology-derived secondary structure of proteins (HSSP) by aligning to each protein of known structure all sequences deemed homologous on the basis of the threshold curve. For each known protein structure, the derived database contains the aligned sequences, secondary structure, sequence variability, and sequence profile. Tertiary structures of the aligned sequences are implied, but not modeled explicity. The database effectively increases the number of known protein structures by a factor of five to more than 1800. The results may be useful in assessing the structural significance of matches in sequence database searches, in deriving preferences and patterns for structure prediction, in elucidating the structural role of conserved residues, and in modeling three-dimensional detail by homology.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 11 (1991), S. 52-58 
    ISSN: 0887-3585
    Keywords: protein structure comparison ; superposition ; clustering ; folding units ; sequence alignment ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We present a fully automatic algorithm for three-dimensional alignment of protein structures and for the detection of common substructures and structural repeats. Given two proteins, the algorithm first identifies all pairs of structurally similar fragments and subsequently clusters into larger units pairs of fragments that are compatible in three dimensions. The detection of similar substructures is independent of insertion/deletion penalties and can be chosen to be independent of the topology of loop connections and to allow for reversal of chain direction. Using distance geometry filters and other approximations, the algorithm, implemented in the WHAT IF program, is so fast that structural comparison of a single protein with the entire database of known protein structures can be performed routinely on a workstation. The method reproduces known non-trivial superpositions such as plastocyanin on azurin. In addition, we report surprising structural similarity between ubiquitin and a (2Fe-2S) ferredoxin.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; short ORFs ; computational ORF verification ; ORF properties ; sequence similarity ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We have analysed short open reading frames (between 150 and 300 base pairs long) of the yeast genome (Saccharomyces cerevisiae) with a two-step strategy. The first step selects a candidate set of open reading frames from the DNA sequence based on statistical evaluation of DNA and protein sequence properties. The second step filters the candidate set by selecting open reading frames with high similarity to other known sequences (from any organism). As a result, we report ten new predicted proteins not present in the current sequence databases. These include a new alcohol dehydrogenase, a protein probably related to the cell cycle, as well as a homolog of the prokaryotic ribosomal protein L36 likely to be a mitochondrial ribosomal protein coded in the nuclear genome. We conclude that the analysis of short open reading frames leads to biologically interesting discoveries, even though the quantitative yield of new proteins is relatively low. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0749-503X
    Keywords: genome sequencing ; yeast-human homolog ; genequiz ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We have determined the nucleotide sequence of 129 524 bases of yeast (Saccharomyces cerevisiae) chromosome XV. Sequence analysis revealed the presence of 59 non-overlapping open reading frames (ORFs) of length 〉300 bp, three tRNA genes, four delta elements and one Ty-element. Among the 21 previously known yeast genes (36% of all ORFs in this fragment) were nucleoporin (NUP1), ras protein (RAS1), RNA polymerase III (RPC1) and elongation factor 2 (EF2). Further, 31 ORFs (53% of the total) were found to be homologous to known protein or DNA sequences, or sequence patterns. For seven ORFs (11% of the total) no homology was found. Among the most interesting protein identifications in this DNA fragment are an inositol polyphosphatase, the second gene of this type found in yeast (homologous to the human OCRL gene involved in Lowe's syndrome), a new ADP ribosylation factor of the arf6 subfamily, the first protein containing three C2 domains, and an ORF similar to a Bacillus subtilis cell-cycle related protein. For each ORF detailed sequence analysis was carried out, with a full consideration of its biological function and pointing out key regions of interest for further functional analysis. The sequence has been submitted to the EMBL data library under Accession Number X94335.© 1997 John Wiley & Sons, Ltd.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...