Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (21)
  • Exocrine secretion  (14)
  • Micropuncture  (7)
Material
  • Electronic Resource  (21)
Keywords
  • 1
    ISSN: 1432-2013
    Keywords: Bicarbonate transport ; Proximal tubule ; Rat kidney ; Antimony microelectrode ; Micro-Astrup ; Benzolamide ; Micropuncture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract To elucidate the mechanism responsible for the establishment of steady state pH at zero net flux (pH∞) in proximal convoluted tubules, luminal pH was recorded continuously with antimony microelectrodes under three experimental conditions. First: luminal pH in stationary droplets was allowed to reach pH∞ (6.76±0.07) and then carbonic anhydrase inhibitor benzolamide (3·10−3 mol/l) was superfused on the kidney surface. Following application of benzolamide, luminal pH decreased within seconds (ΔpH=−0.27±0.03 SEM). Second: tubule segments were perfused continuously with MES-buffer containing solution set to a pH of 6.1. Some 1–2 mm distal to the perfusion pipette luminal pH was recorded and was 6.5±0.04. After superfusion of benzolamide (3·10−3 mol/l) pH decreased (ΔpH=−0.15±0.03). Third: pH in stationary droplets was again allowed to reach pH∞ (6.69±0.01) and bicarbonate and CO2-free solution (5 mmol/l phosphate set to a pH of 7.4) was microinfused into the adjacent peritubular capillary. Luminal pH again decreased almost immediately (ΔpH=−0.23±0.02). The data are interpreted as evidence for a bicarbonate leak. In a fourth series of experiments, segments of proximal tubules were perfused under benzolamide (0.4·10−6 mol/min) with solutions initially free of bicarbonate or other buffers. In the collected fluid, bicarbonate was determined by a micro-Astrup method. A significant increase of luminal bicarbonate concentration (r=0.88) indicates a permeability of 0.98±0.14·10−6 cm2/s of the tubular wall for bicarbonate. Since bicarbonate eventually increases more than 3-fold the equilibrium concentration, collected bicarbonate could not have been formed by H2CO3 or CO2. Bicarbonate enters the luminal fluid and reacts with secreted hydrogen ions to form carbonic acid. It, therefore, buffers secreted hydrogen ions and increases luminal pH at or below steady state. Inhibition of carbonic anhydrase and lowering of peritubular bicarbonate thus lower pH∞.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 395 (1982), S. 121-125 
    ISSN: 1432-2013
    Keywords: Bicarbonate ; Renal tubular transport ; Carbonic anhydrase inhibition ; Permeability ; Microperfusion ; Micropuncture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The present study was designed to define the prerequisites of carbonic anhydrase independent bicarbonate reabsorption. In free flow experiments during systemic application of carbonic anhydrase inhibitor benzolamide (50 mg/kg B. W.) bicarbonate recovery in % of filtered load was found to be 74±8% in late proximal convoluted tubules, 39±6% in distal convoluted tubules and 32±4% in urine, indicating that most of carbonic anhydrase independent bicarbonate reabsorption occurs in tubule segments prior to distal convoluted tubules. In vivo continuous microperfusion experiments in proximal convoluted tubules demonstrated that luminal benzolamide (0.5 mmol/l) virtually abolishes net bicarbonate fluxes, when bicarbonate concentration in the luminal perfusate (25 mmol/l) is close to peritubular plasma concentration (24.4 mmol/l). In contrast, a significant downhill reabsorptive flux occurs, when perfusate bicarbonate concentration is 75 mmol/l and a significant downhill secretory flux is observed, when the perfusate is initially free of bicarbonate. The corresponding apparent permeabilities are 1.0±0.1·10−6 cm2/s for influx and 1.6±0.4·10−6 cm2/s for efflux of bicarbonate. Clearance studies reveal that carbonic anhydrase dependent and independent bicarbonate reabsorption are not saturable but depend on the rate of volume reabsorption in the kidney. In conclusion, passive movements of bicarbonate do occur in proximal convoluted tubules and most likely contribute to carbonic anhydrase independent bicarbonate reabsorption.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 357 (1975), S. 201-207 
    ISSN: 1432-2013
    Keywords: Allantoin ; Uricase ; Kidney ; Clearance ; Micropuncture ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Renal excretion of allantoin was measured by tracer techniques. After injection of 2-C14 urate and H3 inulin, clearances of allantoin and inulin were measured and both proximal and distal tubules were micropunctured. In confirmation of earlier results 2-C14 urate injected into an intact animal is very rapidly converted to C14 allantoin: after 15 min more than 90% of urinary tracer is present as allantoin. It was further observed that 1) allantoin clearance is essentially identical with inulin clearance over a wide range of urine flows; 2) no net transport of allantoin occurs in either proximal or distal tubules. Clearly allantoin is handled by the rat kidney like inulin. The total excretion of filtered allantoin unlike that of filtered urate provides an easy and effective mechanism for animals possessing the enzyme uricase to dispose of their purine loads.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2013
    Keywords: Proximal tubule ; Micropuncture ; Carbonic anhydrase ; Benzolamide ; Acidification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Luminal pH in early and late proximal tubules was recorded continuously with antimony microelectrodes before and during carbonic anhydrase inhibition. Following i.v. application of benzolamide (25 μmol/kg BW), luminal pH decreased almost immediately in early proximal tubules (ΔpH −0.42±0.06 SEM), but increased in late proximal tubules (ΔpH +0.27±0.06). Urinary pH increased (ΔpH +1.6±0.16) after a delay of some 30 s. Similar results, i.e. decrease of pH in early and increase of pH in late proximal tubules, were obtained, when benzolamide containing solutions were microinfused into early proximal tubules or superfused on the nephron surface. In contrast, luminal pH decreased in late proximal tubules, when benzolamide was microinfused into the same nephron segment. The decrease of luminal pH indicates inhibition of luminally active carbonic anhydrase, leading to delayed buffering of secreted hydrogen ions. The increase of luminal pH in late proximal tubules may be attributed to several factors including increased delivery of bicarbonate, impaired bicarbonate exit at the antiluminal membrane and decreased hydrogen ion formation in the tubular cell due to inhibition of cellular carbonic anhydrase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 324 (1971), S. 279-287 
    ISSN: 1432-2013
    Keywords: Uric Acid Secretion ; Micropuncture ; Renal Tubule ; Ultramicro Analysis ; Harnsäuresekretion ; Mikropunktion ; Nierentubulus ; Ultramikroanalyse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung Mit Hilfe der Mikropunktionstechnik und einer neu entwickelten Methode der Ultramikroanalyse wurde der Harnsäuretransport am proximalen Tubulus der Rattenniere untersucht. Unter normalen Bedingungen ohne Harnsäureinfusion und ohne osmotische Diurese konnte eine Harnsäure-Netto-Sekretion im proximalen Tubulus nachgewiesen werden. Dabei war in diesen Experimenten die Inulinclearance etwa doppelt so groß wie die Harnsäureclearance. In der Bilanz wurde also mehr Harnsäure resorbiert als sezerniert, aber nicht, wie früher angenommen, im proximalen Tubulus.
    Notes: Summary Uric acid transport in the rat proximal tubule was studied by micropuncture and a new method of chemical ultramicro analysis. Under normal free-flow conditions at physiological levels of uric acid plasma concentrations a net secretion of uric acid in the proximal tubule was demonstrated. In these experiments the clearance ratio of uric acid to inulin was in the range of 0.4 which is normal in antidiuretic rats. Net reabsorption of uric acid, therefore, took place in the kidney, but certainly not in the proximal tubule as previously suggested.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 434 (1997), S. 188-194 
    ISSN: 1432-2013
    Keywords: Key words Exocrine pancreas ; Cl ; channel ; Cl ; secretion ; Exocrine secretion ; Patch clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Pancreatic acini secrete Na+, Cl–and H2O in response to secretagogues such as acetylcholine. Cl–channels in the luminal membrane are a prerequisite for this secretion. The properties of the corresponding conductance have previously been examined using whole-cell recordings. The present study attempts to examine the properties of the single channels in cell-attached and cell-free excised patches from the luminal membrane. To this end the pipettes were filled with an N-methyl-D-glucamine (NMDG+) chloride/gluconate solution. The voltage-clamp range was chosen to be pipette positive (cell negative, –60 to –130 mV) in order to increase the driving force for outward Cl–currents. Under resting conditions cell attached luminal patches had very few single-channel currents (12 out of 45 experiments). Their incidence was sharply increased by carbachol (CCH, 1 μmol/l) in 41 out of 45 experiments. The single-channel conductance of these channels was 1.97 ± 0.05 pS. The properties of these channels in excised patches were examined further: their single-channel conductance was 2.2 ± 0.07 pS (n = 59) and their conductance selectivity was I– 〉 Br– 〉 Cl– 〉〉 gluconate. None of the typical Cl–channel blockers (DIDS, NPPB, glibenclamide 100 μmol/l) blocked these channels. It is concluded that the luminal membrane of the rat pancreatic acinus possesses Cl–channels with very low conductance which are activated by carbachol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2013
    Keywords: Key words cAMP ; Cl ; channels ; Cl ; secretion ; Exocrine secretion ; K+ channels ; Volume regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Previously it has been shown that the Na+2Cl–K+ cotransporter accepts NH4 + at its K+ binding site. This property can be used to estimate its transport rates by adding NH4 + to the bath and measuring the initial furosemide-dependent rates of change in BCECF fluorescence. We have utilized this technique to determine the regulation of the furosemide-inhibitable Na+2Cl–K+ cotransporter in in vitroperfused rectal gland tubules (RGT) of Squalus acanthias. Addition of NH4 + to the bath (20 mmol/l) led to an initial alkalinization, corresponding to NH3 uptake. This was followed by an acidification, corresponding to NH4 + uptake. The rate of this uptake was quantified by exponential curve fitting and is given in arbitrary units (Δfluorescence/time). This acidification could be completely inhibited by furosemide. In the absence of any secretagogue preincubation of RGT in a low Cl– solution (6 mmol/l, low Cl–) for 10 min enhanced the uptake rate significantly from 4.04±0.51 to 12.7±1.30 (n=5). The addition of urea (200 mmol/l) was without effect, but the addition of 300 mmol/l mannitol (+300 mannitol) enhanced the rate significantly from 7.24±1.33 to 14.7±4.6 (n=6). Stimulation of NaCl secretion by a solution maximizing the cytosolic cAMP concentration (Stim) led to a significant increase in NH4 + uptake rate from 5.00±1.33 to 13.3±1.54 (n=6). Similar results were obtained in the additional presence of Ba2+ (1 mmol/l): the uptake rate was increased significantly from 4.23±0.34 to 15.1±1.86 (n=16). In the presence of Stim low Cl– had no additional effect on the uptake rate: 15.1±3.1 versus 15.2±2.8 in high Cl– (n=6). The uptake rate in Stim containing additional +300 mannitol (22.3±4.0, n=5) was not significantly different from that obtained with Stim or +300 mannitol alone. By whatever mechanism the NH4 + uptake rate was increased furosemide (500 µmol/l) always reduced this rate to control values. Hence three manoeuvres enhanced furosemide-inhibitable uptake rates of the Na+2Cl–K+ cotransporter probably independently: (1) lowering of cytosolic Cl– concentration; (2) cell shrinkage; and (3) activation by cAMP.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 431 (1996), S. 427-434 
    ISSN: 1432-2013
    Keywords: Key words Colon ; Loop diuretics ; Na+ channel ; Cl ; channel ; Non-selective channel ; Exocrine secretion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Whole-cell patch-clamp studies in base cells of isolated colonic crypts of rats pretreated with dexa-methasone were performed to examine the effects of stimulation by forskolin (10 μmol/l). The experiments were designed in order to distinguish between two postulated effector mechanisms: the activation of a non-selective cation channel and the activation of Cl− channels. As shown in an accompanying report, forskolin depolarizes the membrane voltage (V m) by some 40–50 mV and enhances the whole-cell membrane conductance (G m) substantially in these cells. In this report all experiments were performed in the presence of forskolin. A reduction of the bath Na+ concentration from 145 to 2 mmol/l led to a hyperpolarization of V m by some 20–30 mV. This hyperpolarization occurred very slowly suggesting that the hyperpolarization produced by the low-Na+ solution was caused indirectly and not by a change in the equilibrium potential for Na+, E Na+. A complete kinetic analysis of the effect on voltage of bath Na+ revealed a saturation-type relation with a high apparent affinity for Na+ of around 5–10 mmol/l. A reduction in bath Cl− concentration from 145 to 32 mmol/l caused a depolarization of V m from −34 ± 3 to −20 ± 4 mV (n = 13) in the presence of a high bath Na+ concentration, but had the opposite effect at low (5 mmol/l) Na+ concentrations: V m was hyperpolarized from −46 ± 4 to −62 ± 6 mV (n = 13). If the effect of Na+ on V m was caused by a non-selective cation channel the opposite would have been expected. To test directly whether the Na+2Cl−K+ cotransporter was responsible for the effects of changes in bath Na+ on V m, the effects of increasing concentrations of several loop diuretics were examined. Furosemide, piretanide, torasemide and bumetanide (up to 0.1–0.5 mmol/l) all hyperpolarized V m, albeit only by less than 10 mV. Another subclass of loop diuretics containing a tetrazolate in position 1 [e.g. azosemide, no. 19A and no. 20A from Schlatter E, Greger R, Weidtke C (1983) Pflüger Arch 396: 210–217] were much more effective. Azosemide hyperpolarized V m from −46 ± 3 to −74 ± 2 mV (n = 18) and reduced G m from 11 ± 1 to 4 ± 1 nS (n = 14). These data indicate that forskolin stimulates Cl− secretion in these cells by a mechanism fully compatible with the current scheme for exocrine secretion involving the Na+2Cl−K+ cotransporter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2013
    Keywords: Key words Cell volume ; Cl ; secretion ; Exocrine secretion ; Na+2Cl ; K+ cotransporter ; Phalloidin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Effects of cAMP on Cl– secretion, intracellular Cl– activity and cell volume were studied in isolated perfused rectal gland tubules (RGT) of Squalus acanthias with electrophysiological and fluorescence methods. Recording of equivalent short-circuit current (I sc) showed that cAMP stimulates Na+Cl– secretion in a biphasic manner. The first and rapid phase corresponds to Cl– exit via the respective protein-kinase-A- (PKA-) phosphorylated Cl– conductance. The inhibitory effect of the loop diuretic furosemide (0.5 mmol/l, n=12) indicates that second phase reflects the delayed (1–2 min) activation of the Na+2Cl–K+ cotransporter. During the first phase cytosolic Cl– activity, as monitored by 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ) fluorescence, fell to 78% (n=23) of the control value. Concomitantly, a transient fall in cell volume was recorded by calcein fluorescence to 92% (n=5) of the control value. Preincubation of the RGT with phalloidin (0.1 mmol/l, n=6) or cytochalasin D (0.1 mmol/l, n=4) almost completely prevented the development of the second phase of I sc activation. When cytosolic Cl– activity was increased by exposing the RGT to a high K+ concentration (25 mmol/l), in the presence of mannitol to prevent volume increases, stimulation was unaffected and biphasic. In contrast, when cell volume was clamped to an increased value (115%, n=8) by removing extracellular NaCl, the second phase was abolished completely (n=11). These data suggest that the primary and key process for triggering the Na+2Cl–K+ cotransport is transient cell shrinkage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-2013
    Keywords: Ca2+ channel ; Stimulation-secretion coupling ; Exocrine secretion ; Colon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Cl− secretion in HT29 cells is regulated by agonists such as carbachol, neurotensin and adenosine 5′-triphosphate (ATP). These agonists induce Ca2+ store release as well as Ca2+ influx from the extracellular space. The increase in cytosolic Ca2+ enhances the Cl− and K+ conductances of these cells. Removal of extracellular Ca2+ strongly attenuates the secretory response to the above-mentioned agonists. The present study utilises patch-clamp methods to characterise the Ca2+ influx pathway. Inhibitors which have been shown previously to inhibit non-selective cation channels, such as flufenamate (0.1 mmol·l−1, n=6) and Gd3+ (10 μmol·l−1, n=6) inhibited ATP (0.1 mmol·l−1) induced increases in whole-cell conductance (G m). When Cl− and K+ currents were inhibited by the presence of Cs2SO4 in the patch pipette and gluconate in the bath, ATP (0.1 mmol·l−1) still induced a significant increase in G m from 1.2±0.3 nS to 4.7±1 nS (n=24). This suggests that ATP induces a cation influx with a conductance of approximately 3–4 nS. This cation influx was inhibited by flufenamate (0.1 mmol·l−1, n=6) and Gd3+ (10 μmol·l−1, n=9). When Ba2+ (5 mmol·l−1) and 4,4′-diisothiocyanatostilbene-2-2′-disulphonic acid (DIDS, 0.1 mmol·l−1) were added to the KCl/K-gluconate pipette solution to inhibit K+ and Cl− currents and the cells were clamped to depolarised voltages, ATP (0.1 mmol·l−1) reduced the membrane current (I m) significantly from 86±14 pA to 54±11 pA (n=13), unmasking a cation inward current. In another series, the cation inward current was activated by dialysing the cell with a KCl/K-gluconate solution containing 5–10 mmol·l−1 1,2-bis-(2-aminoethoxy)ethane-N,N,N′,N′-tetraacetic acid (EGTA) or 1,2-bis-(2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA). The zero-current membrane voltage (V m) and I m (at a clamp voltage of +10 mV) were monitored as a function of time. A new steady-state was reached 30–120 s after membrane rupture. V m depolarised significantly from −33±2 mV to −12±1 mV, and I m fell significantly from 17±2 pA to 8.9±1.0 pA (n=71). This negative current, representing a cation inward current, was activated when Ca2+ stores were emptied and was reduced significantly (ΔI m) when Ca2+ and/or Na+ were removed from the bathing solution: removal of Ca2+ in the absence of Na+ caused a ΔI m of 5.0±1.2 pA (n=12); removal of Na+ in the absence of Ca2+ caused a ΔI m of 12.8±3.5 pA (n=4). The cation inward current was also reduced significantly by La3+, Gd3+, and flufenamate. We conclude that store depletion induces a Ca2+/Na+ influx current in these cells. With 145 mmol·l−1 Na+ and 1 mmol·l−1 Ca2+, both ions contribute to this cation inward current. This current is an important component in the agonist-regulated secretory response.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...