Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (20)
  • Exocrine secretion  (14)
  • Rat  (7)
Material
  • Electronic Resource  (20)
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 357 (1975), S. 201-207 
    ISSN: 1432-2013
    Keywords: Allantoin ; Uricase ; Kidney ; Clearance ; Micropuncture ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Renal excretion of allantoin was measured by tracer techniques. After injection of 2-C14 urate and H3 inulin, clearances of allantoin and inulin were measured and both proximal and distal tubules were micropunctured. In confirmation of earlier results 2-C14 urate injected into an intact animal is very rapidly converted to C14 allantoin: after 15 min more than 90% of urinary tracer is present as allantoin. It was further observed that 1) allantoin clearance is essentially identical with inulin clearance over a wide range of urine flows; 2) no net transport of allantoin occurs in either proximal or distal tubules. Clearly allantoin is handled by the rat kidney like inulin. The total excretion of filtered allantoin unlike that of filtered urate provides an easy and effective mechanism for animals possessing the enzyme uricase to dispose of their purine loads.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 351 (1974), S. 323-330 
    ISSN: 1432-2013
    Keywords: Uricase ; Urate ; Allantoin ; Liver ; Kidney ; Microperfusion ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. In vivo uricase activity was tested in rats by injection of 2-C14 urate and measurement of the total C14 activity and the fractional activities of allantoin, allantoic acid and urea in samples of blood and urine. In control animals, 5 min after the injection, 70% of the plasma tracer was already present in the form of allantoin. No allantoic acid and urea were produced. Intestinectomy had no measurable influence on uricase activity. On the other hand, hepatectomy or ligation of the hepatic artery combined with subtotal viscerectomy did abolish uricase activity almost completely. 2. Following microinjections into proximal tubules of Ringer solution containing 2-C14 urate, urine samples during early recovery mainly contained labelled urate, whereas in later samples the fraction of labelled allantoin increased. About 12 min after the microinjection the urine of both kidneys contained equal amounts of tracer mainly in the form of allantoin. 3. When segments of proximal tubules were perfused with an equilibrium solution containing tracer amounts of C 14 urate, no urate was metabolized during its passage through the proximal tubule. 4. C 14 urate was offered from the peritubular capillaries and samples of tubular fluid were analyzed, Again, all the tracer in the tubular fluid was in the form of urate, indicating that urate is not oxidized when it is transported across the tubular cell. It is concluded from these results that: 1. The rat kidney has no significant uricase activity. 2. Urate transport in the kidney is not influenced by this enzyme. 3. The degradation of urate to allantoin takes place at extrarenal sites, mainly in the liver.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 434 (1997), S. 188-194 
    ISSN: 1432-2013
    Keywords: Key words Exocrine pancreas ; Cl ; channel ; Cl ; secretion ; Exocrine secretion ; Patch clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Pancreatic acini secrete Na+, Cl–and H2O in response to secretagogues such as acetylcholine. Cl–channels in the luminal membrane are a prerequisite for this secretion. The properties of the corresponding conductance have previously been examined using whole-cell recordings. The present study attempts to examine the properties of the single channels in cell-attached and cell-free excised patches from the luminal membrane. To this end the pipettes were filled with an N-methyl-D-glucamine (NMDG+) chloride/gluconate solution. The voltage-clamp range was chosen to be pipette positive (cell negative, –60 to –130 mV) in order to increase the driving force for outward Cl–currents. Under resting conditions cell attached luminal patches had very few single-channel currents (12 out of 45 experiments). Their incidence was sharply increased by carbachol (CCH, 1 μmol/l) in 41 out of 45 experiments. The single-channel conductance of these channels was 1.97 ± 0.05 pS. The properties of these channels in excised patches were examined further: their single-channel conductance was 2.2 ± 0.07 pS (n = 59) and their conductance selectivity was I– 〉 Br– 〉 Cl– 〉〉 gluconate. None of the typical Cl–channel blockers (DIDS, NPPB, glibenclamide 100 μmol/l) blocked these channels. It is concluded that the luminal membrane of the rat pancreatic acinus possesses Cl–channels with very low conductance which are activated by carbachol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2013
    Keywords: Key words cAMP ; Cl ; channels ; Cl ; secretion ; Exocrine secretion ; K+ channels ; Volume regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Previously it has been shown that the Na+2Cl–K+ cotransporter accepts NH4 + at its K+ binding site. This property can be used to estimate its transport rates by adding NH4 + to the bath and measuring the initial furosemide-dependent rates of change in BCECF fluorescence. We have utilized this technique to determine the regulation of the furosemide-inhibitable Na+2Cl–K+ cotransporter in in vitroperfused rectal gland tubules (RGT) of Squalus acanthias. Addition of NH4 + to the bath (20 mmol/l) led to an initial alkalinization, corresponding to NH3 uptake. This was followed by an acidification, corresponding to NH4 + uptake. The rate of this uptake was quantified by exponential curve fitting and is given in arbitrary units (Δfluorescence/time). This acidification could be completely inhibited by furosemide. In the absence of any secretagogue preincubation of RGT in a low Cl– solution (6 mmol/l, low Cl–) for 10 min enhanced the uptake rate significantly from 4.04±0.51 to 12.7±1.30 (n=5). The addition of urea (200 mmol/l) was without effect, but the addition of 300 mmol/l mannitol (+300 mannitol) enhanced the rate significantly from 7.24±1.33 to 14.7±4.6 (n=6). Stimulation of NaCl secretion by a solution maximizing the cytosolic cAMP concentration (Stim) led to a significant increase in NH4 + uptake rate from 5.00±1.33 to 13.3±1.54 (n=6). Similar results were obtained in the additional presence of Ba2+ (1 mmol/l): the uptake rate was increased significantly from 4.23±0.34 to 15.1±1.86 (n=16). In the presence of Stim low Cl– had no additional effect on the uptake rate: 15.1±3.1 versus 15.2±2.8 in high Cl– (n=6). The uptake rate in Stim containing additional +300 mannitol (22.3±4.0, n=5) was not significantly different from that obtained with Stim or +300 mannitol alone. By whatever mechanism the NH4 + uptake rate was increased furosemide (500 µmol/l) always reduced this rate to control values. Hence three manoeuvres enhanced furosemide-inhibitable uptake rates of the Na+2Cl–K+ cotransporter probably independently: (1) lowering of cytosolic Cl– concentration; (2) cell shrinkage; and (3) activation by cAMP.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 431 (1996), S. 427-434 
    ISSN: 1432-2013
    Keywords: Key words Colon ; Loop diuretics ; Na+ channel ; Cl ; channel ; Non-selective channel ; Exocrine secretion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Whole-cell patch-clamp studies in base cells of isolated colonic crypts of rats pretreated with dexa-methasone were performed to examine the effects of stimulation by forskolin (10 μmol/l). The experiments were designed in order to distinguish between two postulated effector mechanisms: the activation of a non-selective cation channel and the activation of Cl− channels. As shown in an accompanying report, forskolin depolarizes the membrane voltage (V m) by some 40–50 mV and enhances the whole-cell membrane conductance (G m) substantially in these cells. In this report all experiments were performed in the presence of forskolin. A reduction of the bath Na+ concentration from 145 to 2 mmol/l led to a hyperpolarization of V m by some 20–30 mV. This hyperpolarization occurred very slowly suggesting that the hyperpolarization produced by the low-Na+ solution was caused indirectly and not by a change in the equilibrium potential for Na+, E Na+. A complete kinetic analysis of the effect on voltage of bath Na+ revealed a saturation-type relation with a high apparent affinity for Na+ of around 5–10 mmol/l. A reduction in bath Cl− concentration from 145 to 32 mmol/l caused a depolarization of V m from −34 ± 3 to −20 ± 4 mV (n = 13) in the presence of a high bath Na+ concentration, but had the opposite effect at low (5 mmol/l) Na+ concentrations: V m was hyperpolarized from −46 ± 4 to −62 ± 6 mV (n = 13). If the effect of Na+ on V m was caused by a non-selective cation channel the opposite would have been expected. To test directly whether the Na+2Cl−K+ cotransporter was responsible for the effects of changes in bath Na+ on V m, the effects of increasing concentrations of several loop diuretics were examined. Furosemide, piretanide, torasemide and bumetanide (up to 0.1–0.5 mmol/l) all hyperpolarized V m, albeit only by less than 10 mV. Another subclass of loop diuretics containing a tetrazolate in position 1 [e.g. azosemide, no. 19A and no. 20A from Schlatter E, Greger R, Weidtke C (1983) Pflüger Arch 396: 210–217] were much more effective. Azosemide hyperpolarized V m from −46 ± 3 to −74 ± 2 mV (n = 18) and reduced G m from 11 ± 1 to 4 ± 1 nS (n = 14). These data indicate that forskolin stimulates Cl− secretion in these cells by a mechanism fully compatible with the current scheme for exocrine secretion involving the Na+2Cl−K+ cotransporter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2013
    Keywords: Key words Cell volume ; Cl ; secretion ; Exocrine secretion ; Na+2Cl ; K+ cotransporter ; Phalloidin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Effects of cAMP on Cl– secretion, intracellular Cl– activity and cell volume were studied in isolated perfused rectal gland tubules (RGT) of Squalus acanthias with electrophysiological and fluorescence methods. Recording of equivalent short-circuit current (I sc) showed that cAMP stimulates Na+Cl– secretion in a biphasic manner. The first and rapid phase corresponds to Cl– exit via the respective protein-kinase-A- (PKA-) phosphorylated Cl– conductance. The inhibitory effect of the loop diuretic furosemide (0.5 mmol/l, n=12) indicates that second phase reflects the delayed (1–2 min) activation of the Na+2Cl–K+ cotransporter. During the first phase cytosolic Cl– activity, as monitored by 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ) fluorescence, fell to 78% (n=23) of the control value. Concomitantly, a transient fall in cell volume was recorded by calcein fluorescence to 92% (n=5) of the control value. Preincubation of the RGT with phalloidin (0.1 mmol/l, n=6) or cytochalasin D (0.1 mmol/l, n=4) almost completely prevented the development of the second phase of I sc activation. When cytosolic Cl– activity was increased by exposing the RGT to a high K+ concentration (25 mmol/l), in the presence of mannitol to prevent volume increases, stimulation was unaffected and biphasic. In contrast, when cell volume was clamped to an increased value (115%, n=8) by removing extracellular NaCl, the second phase was abolished completely (n=11). These data suggest that the primary and key process for triggering the Na+2Cl–K+ cotransport is transient cell shrinkage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2013
    Keywords: Ca2+ channel ; Stimulation-secretion coupling ; Exocrine secretion ; Colon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Cl− secretion in HT29 cells is regulated by agonists such as carbachol, neurotensin and adenosine 5′-triphosphate (ATP). These agonists induce Ca2+ store release as well as Ca2+ influx from the extracellular space. The increase in cytosolic Ca2+ enhances the Cl− and K+ conductances of these cells. Removal of extracellular Ca2+ strongly attenuates the secretory response to the above-mentioned agonists. The present study utilises patch-clamp methods to characterise the Ca2+ influx pathway. Inhibitors which have been shown previously to inhibit non-selective cation channels, such as flufenamate (0.1 mmol·l−1, n=6) and Gd3+ (10 μmol·l−1, n=6) inhibited ATP (0.1 mmol·l−1) induced increases in whole-cell conductance (G m). When Cl− and K+ currents were inhibited by the presence of Cs2SO4 in the patch pipette and gluconate in the bath, ATP (0.1 mmol·l−1) still induced a significant increase in G m from 1.2±0.3 nS to 4.7±1 nS (n=24). This suggests that ATP induces a cation influx with a conductance of approximately 3–4 nS. This cation influx was inhibited by flufenamate (0.1 mmol·l−1, n=6) and Gd3+ (10 μmol·l−1, n=9). When Ba2+ (5 mmol·l−1) and 4,4′-diisothiocyanatostilbene-2-2′-disulphonic acid (DIDS, 0.1 mmol·l−1) were added to the KCl/K-gluconate pipette solution to inhibit K+ and Cl− currents and the cells were clamped to depolarised voltages, ATP (0.1 mmol·l−1) reduced the membrane current (I m) significantly from 86±14 pA to 54±11 pA (n=13), unmasking a cation inward current. In another series, the cation inward current was activated by dialysing the cell with a KCl/K-gluconate solution containing 5–10 mmol·l−1 1,2-bis-(2-aminoethoxy)ethane-N,N,N′,N′-tetraacetic acid (EGTA) or 1,2-bis-(2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA). The zero-current membrane voltage (V m) and I m (at a clamp voltage of +10 mV) were monitored as a function of time. A new steady-state was reached 30–120 s after membrane rupture. V m depolarised significantly from −33±2 mV to −12±1 mV, and I m fell significantly from 17±2 pA to 8.9±1.0 pA (n=71). This negative current, representing a cation inward current, was activated when Ca2+ stores were emptied and was reduced significantly (ΔI m) when Ca2+ and/or Na+ were removed from the bathing solution: removal of Ca2+ in the absence of Na+ caused a ΔI m of 5.0±1.2 pA (n=12); removal of Na+ in the absence of Ca2+ caused a ΔI m of 12.8±3.5 pA (n=4). The cation inward current was also reduced significantly by La3+, Gd3+, and flufenamate. We conclude that store depletion induces a Ca2+/Na+ influx current in these cells. With 145 mmol·l−1 Na+ and 1 mmol·l−1 Ca2+, both ions contribute to this cation inward current. This current is an important component in the agonist-regulated secretory response.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2013
    Keywords: Key words Cl ; secretion ; Carbachol ; K+ channel ; cAMP ; Exocrine secretion ; Non-selective cation channel ; Cl ; channel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  We have previously shown that a new type of K+ channel, present in the basolateral membrane of the colonic crypt base (blm), is necessary for cAMP-activated Cl- secretion. Under basal conditions, and when stimulated by carbachol (CCH) alone, this channel is absent. In the present patch clamp-study we examined the ion channels present in the blm under cell-attached and in cell-excised conditions. In cell-attached recordings with NaCl-type solution in the pipette we measured activity of a K+ channel of 16 ± 0.3 pS (n = 168). The activity of this channel was sharply increased by CCH (0.1 mmol/l, n = 26). Reduction of extracellular Ca2+ to 0.1 mmol/l (n = 34) led to a reversible reduction of activity of this small channel (SKCa). It was also inactivated by forskolin (5 μmol/l, n = 38), whilst the K+ channel noise caused by the very small K+ channel increased. Activity of non-selective cation channels (NScat) was rarely observed immediately prior to the loss of attached basolateral patches and routinely in excised patches. The NScat, with a mean conductance of 49 ± 1.0 pS (n = 96), was Ca2+ activated and required 〉10 μmol/l Ca2+ (cytosolic side = cs). It was reversibly inhibited by ATP (〈1 mmol/l, n = 13) and by 3′,5-dichloro-diphenylamine-2-carboxylate (10–100 μmol/l, n = 5). SKCa was also Ca2+ dependent in excised inside-out basolateral patches. Its activity stayed almost unaltered down to 1 μmol/l (cs) and then fell sharply to almost zero at 0.1 μmol/l Ca2+ (cs, n = 12). SKCa was inhibited by Ba2+ (n = 31) and was charybdotoxin sensitive (1 nmol/l) in outside-out basolateral patches (n = 3). Measurements of the Ca2+ activity ([Ca2+]i) in these cells using fura-2 indicated that forskolin and depolarization, induced by an increase in bath K+ concentration to 30 mmol/l, reduced [Ca2+]i markedly (n = 8–10). Hyperpolarization had the opposite effect. The present data indicate that the blm of these cells contains a small-conductance Ca2+-sensitive K+ channel. This channel is activated promptly by very small increments in [Ca2+]i and is inactivated by a fall in [Ca2+]i induced by forskolin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2013
    Keywords: Key words CFTR ; Cl ; channels ; Cl ; secretion ; Endocytosis ; Exocrine secretion ; Exocytosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  NaCl secretion in rectal gland tubules (RGT) of Squalus acanthias requires the activation of Cl– channels in the luminal membrane. The RGT and its mechanism of activation are an early evolutionary paradigm of exocrine secretion. The respective Cl– channels probably resemble the shark equivalent of the cystic fibrosis transmembrane conductance regulator (CFTR). Activation of these Cl– channels occurs via cAMP. It has been hypothesized that the activation of CFTR occurs via exocytosis or inhibited endocytosis. To examine this question directly by electrical measurements we have performed whole-cell patch-clamp analyses of in vitro perfused RGT. NaCl secretion was stimulated by a solution (Stim) containing forskolin (10 µmol/l), dibutyryl-cAMP (0.5 mmol/l) and adenosine (0.5 mmol/l). This led to the expected strong depolarization and an increase in membrane conductance (G m). The membrane capacitance (C m) was measured by a newly devised two-frequency synchronous detector method. It was increased by Stim significantly from 5.00±0.22 to 5.17±0.21 pF (n=50). The increase in C m correlated with the increase in G m with a slope of 51 fF/nS. Next the effect of furosemide (500 µmol/l) was examined in previously stimulated RGT. Furosemide was supposed to inhibit coupled Na+2Cl–K+ uptake and to reduce cell volume but not membrane trafficking of Cl– channels. Furosemide reduced G m slightly (due to the fall in cytosolic Cl– concentration) and C m to the same extent by which Stim had increased it. Both changes were statistically significant, and the slope of ΔC m/ΔG m was similar to that caused by Stim. Inhibitors of microtubules or actin (colchicine, phalloidin and cytochalasin D added at 10 µmol/l to the pipette solution and dialysed for 〉10 min) did not alter cell voltage, G m or C m, nor did these inhibitors abolish the stimulatory effect of cAMP. These data suggest that the small C m changes observed with Stim reflect a minor cell volume increase and an ”unfolding” of the plasma membrane. The present data do not support the exocytosis/endocytosis hypothesis of cAMP-mediated activation of Cl– channels in these cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-2013
    Keywords: Key words ATP ; Distal colon ; Exocrine secretion ; K+ secretion ; Luminal receptors ; P2Y2 receptor ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  We have previously investigated, in studies of rat distal colonic mucosa, the effect of ATP added to the basolateral side on ion transport and [Ca2+]i. It was demonstrated that ATP acts via a P2Y1 receptor to increase [Ca2+]i and NaCl secretion. In the present study we investigated the effect of luminally added nucleotides (ATP, UTP) on transepithelial voltage (V te) and resistance (R te) in Ussing chamber experiments on rat distal colonic mucosa. Both nucleotides induced a rapid and transient (within 30 s) change of V te to lumen-positive values (resting V te: –2±1 mV; peak V te after 100 µmol/l ATP: +2.4±1.1 mV) and a decrease of R te from 89.9±10.3 to 83.8±9.1 Ωcm2 (n=10). Similar values were obtained with luminal UTP (n=15). The estimated EC50 values for both nucleotides were approximately 6 µmol/l. The ATP-induced V te effect was nearly completely sensitive to Ba2+. Addition of the K+ channel blocker Ba2+ (1 mmol/l) to the luminal solution reversibly inhibited 77±4% (n=5) of the ATP-induced V te effect. Experiments to identify the respective P2 receptor subtype revealed the following rank order of potency at 500 µmol/l agonist: UTP≥ATP〉〉2-methylthio-ATP=ADP〉〉adenosine〉 AMP〉β,γ-methylene-ATP (n=5). This closely resembles the published rank order for the P2Y2 receptor. Using the reverse-transcriptase polymerase chain reaction (RT-PCR) technique P2Y2 receptor-specific mRNA was detected in total RNA extracted from isolated crypts. In summary these data indicate that luminal ATP and UTP act via a P2Y2 receptor in the luminal membrane of colonic mucosa to elicit a transient K+ secretion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...