Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (21)
  • HT29  (14)
  • Rat  (7)
Material
  • Electronic Resource  (21)
  • 1
    ISSN: 1432-1912
    Keywords: Key words TMB-8 ; Fura-2 ; HT29 ; M3-receptor ; ATP ; Carbachol ; Neurotensin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  8-(N, N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) is a widely used pharmacological tool to investigate the involvement of intracellular Ca2+ stores in cellular responses. In this study we investigate the effect of TMB-8 as a putative inhibitor of “Ca2+ signalling” in single fura-2 loaded HT29 colonic epithelial cells stimulated by ATP, carbachol (CCH) and neurotensin (NT). TMB-8 effectively inhibited the CCH-induced (100 μmol/l intracellular Ca2+ ([Ca2+]i) transient with an IC50 of 20 μmol/l. However, [Ca2+]i transients induced by other phospholipase C coupled agonists ATP (10 μmol/l, n=4) and NT (10 nmol/l, n=4) remained unaffected by TMB-8 (50 μmol/l). The agonist-induced [Ca2+]i transients remained equally unaffected by 100 μmol/l TMB-8 when the stimulatory concentration was reduced to 0.5 μmol/l for ATP (n=4) or 1 nmol/l for NT (n=4). The competitive nature of the TMB-8-induced inhibition of the CCH-induced [Ca2+]i transient was demonstrated by examining the agonist at various concentrations in absence and presence of the antagonist. High TMB-8 concentrations (100 μmol/l) alone induced a small [Ca2+]i increase (Δ[Ca2+]i: 40±5 nmol/l, n=7). We assume that this increase is a consequence of a TMB-8 induced intracellular alkalinization (ΔpH: 0.1±0.02, n=7) occurring simultaneously with the increase in [Ca2+]i. From these results we draw the following conclusions: (1) In sharp contrast to a large number of other studies, but in agreement with studies in other types of cells, these results substantially challenge the value of the “tool” TMB-8 as an “intracellular Ca2+ antagonist”; (2) TMB-8 acts a muscarinic receptor antagonist at the M3 receptor; (3) TMB-8 does not influence the release of Ca2+ from intracellular stores when IP3 signal transduction is activated by ATP or NT; (4) TMB-8 as a weak organic base alkalinizes the cytosol at high concentrations; and (5) TMB-8 induces small [Ca2+]i transients at higher concentrations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1912
    Keywords: TMB-8 ; Fura-2 ; HT29 ; M3-receptor ; ATP ; Carbachol ; Neurotensin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract 8-(N, N-diethyl amino) octyl-3,4,5-trimethoxybenzoate (TMB-8) is a widely used pharmacological tool to investigate the involvement of intracellular Ca2+ stores in cellular responses. In this study we investigate the effect of TMB-8 as a putative inhibitor of “Ca2+ signalling” in single fura-2 loaded HT29 coIonic epithelial cells stimulated by ATP, carbachol (CCH) and neurotensin (NT). TMB-8 effectively inhibited the CCH-induced (100 μmol/l intracellular Ca2+ ([Ca2+]i) transient with an IC50 of 20 μmol/l. However, [Ca2+]i transients induced by other phospholipase C coupled agonists ATP (10 μmol/l, n = 4) and NT (10 nmol/l, n = 4) remained unaffected by TMB-8 (50 μmol/l). The agonist-induced [Ca2+]i transients remained equally unaffected by 100 μmol/l TMB-8 when the stimulatory concentration was reduced to 0.5 μmol/I for ATP (n = 4) or 1 nmol/l for NT (n = 4). The competitive nature of the TMB-8-induced inhibition of the CCH-induced [Ca2+]i transient was demonstrated by examining the agonist at various concentrations in absence and presence of the antagonist. High TMB-8 concentrations (100 μmol/l) alone induced a small [Ca2+]i increase (Δ[Ca2+]i: 40 ± 5 nmol/l, n = 7). We assume that this increase is a consequence of a TMB-8 induced intracellular alkalinization (Δ pH: 0.1 ± 0.02, n = 7) occurring simultaneously with the increase in [Ca +]i. From these results we draw the following conclusions: (1) In sharp contrast to a large number of other studies, but in agreement with studies in other types of cells, these results substantially challenge the value of the “tool” TMB-8 as an “intracellular Ca2+ antagonist”; (2) TMB-8 acts a muscarinic receptor antagonist at the M3 receptor; (3) TMB-8 does not influence the release of Ca2+ from intracellular stores when IP3 signal transduction is activated by ATP or NT; (4) TMB-8 as a weak organic base alkalinizes the cytosol at high concentrations; and (5) TMB-8 induces small [Ca2+]i transients at higher concentrations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 357 (1975), S. 201-207 
    ISSN: 1432-2013
    Keywords: Allantoin ; Uricase ; Kidney ; Clearance ; Micropuncture ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Renal excretion of allantoin was measured by tracer techniques. After injection of 2-C14 urate and H3 inulin, clearances of allantoin and inulin were measured and both proximal and distal tubules were micropunctured. In confirmation of earlier results 2-C14 urate injected into an intact animal is very rapidly converted to C14 allantoin: after 15 min more than 90% of urinary tracer is present as allantoin. It was further observed that 1) allantoin clearance is essentially identical with inulin clearance over a wide range of urine flows; 2) no net transport of allantoin occurs in either proximal or distal tubules. Clearly allantoin is handled by the rat kidney like inulin. The total excretion of filtered allantoin unlike that of filtered urate provides an easy and effective mechanism for animals possessing the enzyme uricase to dispose of their purine loads.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 351 (1974), S. 323-330 
    ISSN: 1432-2013
    Keywords: Uricase ; Urate ; Allantoin ; Liver ; Kidney ; Microperfusion ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. In vivo uricase activity was tested in rats by injection of 2-C14 urate and measurement of the total C14 activity and the fractional activities of allantoin, allantoic acid and urea in samples of blood and urine. In control animals, 5 min after the injection, 70% of the plasma tracer was already present in the form of allantoin. No allantoic acid and urea were produced. Intestinectomy had no measurable influence on uricase activity. On the other hand, hepatectomy or ligation of the hepatic artery combined with subtotal viscerectomy did abolish uricase activity almost completely. 2. Following microinjections into proximal tubules of Ringer solution containing 2-C14 urate, urine samples during early recovery mainly contained labelled urate, whereas in later samples the fraction of labelled allantoin increased. About 12 min after the microinjection the urine of both kidneys contained equal amounts of tracer mainly in the form of allantoin. 3. When segments of proximal tubules were perfused with an equilibrium solution containing tracer amounts of C 14 urate, no urate was metabolized during its passage through the proximal tubule. 4. C 14 urate was offered from the peritubular capillaries and samples of tubular fluid were analyzed, Again, all the tracer in the tubular fluid was in the form of urate, indicating that urate is not oxidized when it is transported across the tubular cell. It is concluded from these results that: 1. The rat kidney has no significant uricase activity. 2. Urate transport in the kidney is not influenced by this enzyme. 3. The degradation of urate to allantoin takes place at extrarenal sites, mainly in the liver.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2013
    Keywords: Key words Ca2+ influx ; Fura-2 ; cAMP ; Forskolin ; Carbachol ; HT29 ; Second messenger ; Patch-clamp technique
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In HT29 colonic epithelial cells agonists such as carbachol (CCH) or ATP increase cytosolic Ca2+ activity ([Ca2+]i) in a biphasic manner. The first phase is caused by inositol 1,4,5-trisphophate-(Ins P 3-) mediated Ca2+ release from their respective stores and the second plateau phase is mainly due to stimulated transmembraneous Ca2+ influx. The present study was undertaken to examine the effect of increased adenosine 3′,5′-cyclic monophasphate (cAMP) (forskolin 10 μmol/l = FOR) on the Ca2+ transient in the presence of CCH (100 μmol/l). In unpaired experiments it was found that FOR induced a depolarization and reduced cytosolic Ca2+ ([Ca2+]i, measured as the fura-2 fluorescence ratio 340/380 nm) significantly. Dideoxyforskolin had no such effect. The effect of FOR was abolished when the cells were depolarized by a high-K+ solution. In further paired experiments utilizing video imaging in conjunction with whole-cell patch-clamp, [Ca2+]i was monitored separately for the patch-clamped cell and three to seven neighbouring cells. In the presence of CCH, FOR reduced [Ca2+]i uniformly from a fluorescence ratio (345/380) of 2.9 ± 0.12 to 1.8 ± 0.07 in the patch-clamped cell and its neighbours (n = 48) and depolarized the membrane voltage (V m) of the patch-clamped cells significantly and reversibly from −54 ± 7.4 to −27 ± 5.9 mV (n = 6). In additional experiments V m was depolarized by 15–54 mV by various increments in the bath K+ concentration. This led to corresponding reductions in [Ca2+]i. Irrespective of the cause of depolarization (high K+ or FOR) there was a significant correlation between the change in V m and change in [Ca2+]i. These data indicate that the cAMP-mediated attenuation of Ca2+ influx is caused by the depolarization produced by this second messenger.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2013
    Keywords: Ca2+ influx ; Nystatin perforated patchclamp technique ; Fura-2 ; HT29 ; ATP ; Thapsigargin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Indirect evidence has accumulated indicating a voltage dependence of the agonist-stimulated Ca2+ influx into epithelial cells. Manoeuvres expected to depolarise the membrane voltage during agonist stimulation resulted in: (1) a decrease of the sustained phase of the adenosine triphosphate (ATP, 10−5 mol/l)-induced intracellular Ca2+ transient, (2) a reduced fura-2 Mn2+-quenching rate, and (3) prevention of the refilling of the agonist-sensitive store. To quantify the change in intracellular Ca2+ as a function of membrane voltage, we measured simultaneously the intracellular Ca2+ activity ([Ca2+]i) with fura-2 and the electrical properties using the nystatin perforated patch-clamp technique in single HT29 cells. Ca2+ influx was either stimulated by ATP (10−5 mol/l) or thapsigargin (TG, 10−8 mol/l). After [Ca2+]i reached the sustained plateau phase we clamped the membrane voltage in steps of 10 mV in either direction. A stepwise depolarisation resulted in a stepwise reduction of [Ca2+]i. Similarly a stepwise hyperpolarisation resulted in a stepwise increase of [Ca2+]i (ATP: 27.5±10 nmol/l per 10 mV, n=6; TG: 19 ±7.9 nmol/l per 10 mV, n=12). The summarised data show a linear relationship between the Δ fluorescence ratio 340/380 nm change and the applied holding voltage. In unstimulated cells the same voltage-clamp protocol did not change [Ca2+]i (n=9). Under extracellular Ca2+-free conditions [Ca2+]i remained unaltered when changing the membrane voltage. These data provide direct evidence that the Ca2+ influx in epithelial cells is membrane voltage dependent. Our data indicate that small changes in membrane voltage lead to substantial changes in [Ca2+]i. This may be due either to a change of driving force for Ca2+ into the cell, or may reflect voltage-dependent regulation of the respective Ca2+ entry mechanism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2013
    Keywords: Key words BCECF ; Fura-2 ; pHi ; [Ca2+]i ; HT29 ; Carbachol ; Neurotensin ; ATP ; InsP3 ; Cell volume ; Calcein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  In this study we examined the influence of intracellular pH (pHi) on agonist-induced changes of intracellular Ca2+ activity ([Ca2+]i) in HT29 cells. pHi and [Ca2+]i were measured microspectrofluorimetrically using BCECF and fura-2, respectively. Buffers containing trimethylamine (TriMA), NH3/NH4 + and acetate were used to clamp pHi to defined values. The magnitudes of the peak and plateau of [Ca2+]i transients induced by carbachol (CCH, 10–6 mol/l) were greatly enhanced by an acidic pHi and nearly abolished by an alkaline pHi. The relationship between pHi and the [Ca2+]i peak was nearly linear from pHi 7.0 to 7.8. This effect of pHi was also observed at higher CCH concentrations (10–4 and 10–5 mol/l), at which the inhibitory effect of an alkaline pHi was more pronounced than the stimulatory effect of an acidic pHi. An acidic pHi shifted the CCH concentration/response curve to the left, whereas an alkaline pHi led to a rightward shift. The influence of pHi on [Ca2+]i transients induced by neurotensin (10–8 mol/l) or ATP (5 × 10–7 mol/l) was similar to its influence on those induced by CCH, but generally not as pronounced. Measurements of cellular inositol 1,4,5-trisphosphate (InsP 3) showed no changes in response to acidification with acetate (20 mmol/l) or alkalinization with TriMA (20 mmol/l). The InsP 3 increase induced by CCH was unaltered at an acidic pHi, but was augmented at an alkaline pHi. Confocal measurements of cell volume showed no significant changes induced by TriMA or acetate. Slow-whole-cell patch-clamp experiments showed no additional effect of CCH on the membrane voltage (V m) measured after TriMA or acetate application. We conclude that pHi is a physiological modulator of hormonal effects in HT29 cells, as the [Ca2+]i responses to agonists were significantly changed at already slightly altered pHi. The measurements of InsP 3, cell volume and V m show that pHi must act distally to the InsP 3 production, and not via changes of cell volume or V m.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 421 (1992), S. 224-229 
    ISSN: 1432-2013
    Keywords: Cl− conductance ; HT29 ; P2 receptor ; Colon ; Cl− secretion ; cAMP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The colonic carcinoma cell line HT29 was used to examine the influence of agonists increasing cytosolic cAMP and Ca2+ activity on the conductances and the cell membrane voltage (V m). HT29 cells were grown on glass cover-slips. Cells were impaled by microelectrodes 4–10 days after seeding, when they had formed large plaques. In 181 impalements V m was −51±1 mV. An increase in bath K+ concentration from 3.6 mmol/l to 18.6 mmol/l or 0.5 mmol/l Ba2+ depolarized the cells by 10±1 mV (n=49) or by 9±2 mV (n=3), respectively. A decrease of bath Cl− concentration from 145 to 30 mmol/l depolarized the cells by 11±1 mV (n=24). Agents increasing intracellular cAMP such as isobutylmethylxanthine (0.1 mmol/l), forskolin (10 μmol/l) or isoprenaline (10 μmol/l) depolarized the cells by 6±1 (n=13), 15±3 (n=5) and 6±2 (n=3) mV, respectively. In hypoosmolar solutions (225 mosmol/l) cells depolarized by 9±1 mV (n=6). Purine and pyrimidine nucleotides depolarized the cells dose-dependently with the following potency sequence: UTP 〉 ATP 〉 ITP 〉 GTP 〉 TIP 〉 CTP = 0. The depolarization by ATP was stronger than that by ADP and adenosine. The muscarinic agonist carbachol led to a sustained depolarization by 27±6 mV (n=5) at 0.1 mmol/l, and to a transient depolarization by 12±4 mV (n=5) at 10 μmol/l. Neurotensin depolarized with a half-maximal effect at around 5 nmol/l. The depolarization induced by nucleotides and neurotensin was transient and followed by a hyperpolarization. We confirm that HT29 cells possess Cl−- and K+-conductive pathways. The Cl− conductance is regulated by intracellular cAMP level, cytosolic Ca2+ activity, and cell swelling. The K+ conductance in HT29 cells is regulated by intracellular Ca2+ activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2013
    Keywords: [Ca2+]i export ; Thapsigargin ; fura-2 ; HT29 ; CFPAC-1 ; ATP ; Carbachol ; Neurotensin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract There is increasing evidence that some agonists not only induce intracellular Ca2+ increases, due to store release and transmembranous influx, but also that they stimulate Ca2+ efflux. We have investigated the agonist-stimulated response on the intracellular Ca2+ activity ([Ca2+]i) in the presence of thapsigargin (10−8 mol/l, TG) in HT29 and CFPAC-1 cells. For CFPAC-1 the agonists ATP (10−7–10−3 mol/l, n=9), carbachol (10−6–10−3 mol/l, n=5) and neurotensin (10−10–10−7 mol/l, n=6) all induced a concentration-dependent decrease in [Ca2+]i in the presence of TG. Similar results were obtained with HT29 cells. This decrease of [Ca2+]i could be caused by a reduced Ca2+ influx, either due to a reduced driving force for Ca2+ in the presence of depolarizing agonists or due to agonist-regulated decrease in Ca2+ permeability. Using the fura-2 Mn2+ quenching technique we demonstrated that ATP did not slow the TG-induced Mn2+ quench. This indicates that the agonist-induced [Ca2+]i decrease in the presence of TG was not due to a reduced influx of Ca2+ into the cell, but rather due to stimulation of Ca2+ export. We used the cell attached nystatin patch clamp technique in CFPAC-1 cells to examine whether, in the presence of TG, the above agonists still led to the previously described electrical changes. The cells had a mean membrane voltage of −49±3.6 mV (n=9). Within the first 3 min ATP was still able to induce a depolarization which could be attributed to an increase in Cl− conductance. This was expected, since at this time after TG stimulation all Ca2+ agonists still liberated some [Ca2+]i. When TG incubation was prolonged, agonist application led to strongly attenuated or to no electrical responses. Therefore, the agonist-stimulated [Ca2+]i decrease cannot be explained by the reduction of the driving force for Ca2+ into the cell. In the same cells hypotonic swelling (160 mosmol/l, n=15) still induced a further [Ca2+]i increase in the presence of TG and concomitantly induced Cl− and K+ conductances. We conclude that the agonist-induced decrease of [Ca2+]i in the presence of TG probably unmasks a stimulation of [Ca2+]i export.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 424 (1993), S. 456-464 
    ISSN: 1432-2013
    Keywords: Cl− channels ; Cl− secretion ; HT29 ; Ca2+ ; cAMP ; Protein kinase A ; Cytosolic inhibitor ; Cystic fibrosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Recently, it has been shown that intermediate conductance outwardly rectifying chloride channels (ICOR) are blocked by cytosolic inhibitor (C. I.) found in the cytosol of human placenta and epithelial cells. C. I. also reduced the baseline current in excised membrane patches of HT29 cells. In the present study, this effect of C. I. was characterized further. Heat treated human placental cytosol was extracted in organic solvents and dissolved in different electrolyte solutions. It is shown that the reduction of baseline conductance (g o) is caused by inhibition of small non-resolvable channels, which are impermeable to Na+ and SO4 2−, but permeable to Cl−. The regulation of these small Cl−-conducting channels (g o) and of ICOR was examined further. First, no activating effects of protein kinase A (PKA) on the open probability (P o) of the ICOR or on the go) were observed. The Po of the ICOR was reduced by 22% in a Ca2+-free solution. g o was insensitive to changes in the Ca2+ activity. The effects of C. I. from a cystic fibrosis (CF) placenta and the CF pancreatic duct cell line CFPAC-1 were compared with the effects of corresponding control cytosols, and no significant differences between CF and control cytosols were found. We conclude that the excised patches of HT29 cells contain ICOR and small non-resolvable Cl−-conducting channels which are similarly inhibited by C. I. Apart from a weak effect of Ca2+ on the ICOR, g o and the ICOR do not seem to be directly controlled by Ca2+ or PKA. C. I. of normal and CF epithelia have a similar inhibitory potency on Cl− channels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...