Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Diabetologia 23 (1982), S. 517-520 
    ISSN: 1432-0428
    Schlagwort(e): Insulin deficiency ; insulin receptor ; fat cells ; lipogenesis ; antibody-induced diabetes mellitus ; rat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The influence of antibody-induced insulin deficiency in rats on the insulin binding and insulin sensitivity of adipocytes was studied. Rats were injected intraperitoneally with an insulin antibody preparation; the development of hyperglycaemia was followed and the animals were sacrificed 3 and 5 h after antibody injection. Up to 3 h, no significant change of insulin binding or sensitivity of the adipocytes occurred. At 5 h, cells of antibody-treated rats showed an approximately 40% increased binding capacity compared with untreated rats. The increased binding capacity was accompanied by an approximate two-fold increased sensitivity of the insulin effect on lipogenesis from glucose in these cells.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-0428
    Schlagwort(e): Sulphonylurea ; rat ; insulin binding ; insulin action ; extrapancreatic effect ; glycogen synthesis ; rat hepatocytes in primary culture
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The effects of a sulphonylurea, gliquidone, on insulin binding and the insulin induced rate of glycogen synthesis, were studied in rat hepatocytes in primary culture. Hepatocytes were cultured for 48 h. During the second 24 h of this period, the hepatocytes were incubated with or without gliquidone (5 mg/l). The binding of 125I-insulin and the insulin stimulation of glycogen synthesis from 14C-glucose were measured. Gliquidone influenced neither insulin binding nor the basal rate of glycogen synthesis, but it did enhance the effect of insulin on glycogen synthesis. Responsiveness was increased by gliquidone at all insulin concentrations used (10–10,000 mU/l); at 1000 mil/l the drug increased glycogen synthesis from 310 to 430% above the basal rate. Half-maximal stimulation was reached in control cells at an insulin concentration of 95 mU/l and in gliquidone-treated cells at 94 mU/l, which indicates unchanged insulin sensitivity. Based on these experiments with cultured rat hepatocytes it appears that the extrapancreatic action of gliquidone is not mediated by an effect on insulin binding.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1432-0428
    Schlagwort(e): Insulin receptor kinase ; insulin resistance ; glucose transport ; catecholamines ; phorbolester
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The effect of the catecholamine isoprenaline (10−5mol/l) and of the tumour promoting phorbolester tetradecanoyl-β-phorbol acetate (10−9mol/l) on insulin stimulated 3-O-methyl-glucose transport was studied in freshly isolated human adipocytes. Both substances reduced the maximal responsiveness of the glucose transport system to insulin by approximately 50%. To test if this is caused by inhibition of the insulin receptor kinase the receptor from phorbolester and isoprenaline treated cells was solubilized, partially purified and its kinase activity studied in vitro. Insulin stimulated 32P-incorporation into the β-subunit of the insulin receptor of phorbolester or isoprenaline treated cells was reduced to 20–60% of the values found with receptor from control cells at insulin concentrations between 10−10mol/l and 10−7mol/l. This inhibition of kinase activity of receptor from phorbolester and isoprenaline treated cells was observed at nonsaturating adenosine triphosphate levels (5 μmol/l), and it could be overcome with higher concentrations of γ-32P-adenosine triphosphate in the phosphorylation assay. A Lineweaver Burk analysis of the insulin stimulated receptor phosphorylation revealed that the Michaelis constant for adenosine triphosphate of the receptor kinase from phorbolester and isoprenaline treated cells was increased to 〉100 μmol/l compared with 〈50 μmol/l for receptor from control cells. We conclude from the data that catecholamine and phorbolester treatment of human adipocytes modulates the kinase activity of the insulin receptor by increasing its Michaelis constant for adenosine-triphosphate, and propose that this modulation of receptor kinase is a mechanism that can contribute to the pathogenesis of insulin resistance in human fat cells.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1432-0428
    Schlagwort(e): Zucker rats ; skeletal muscle ; insulin resistance ; glucose transporter (GLUT 1 and GLUT 4) ; GLUT 4 translocation
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The genetically obese Zucker rat (fa/fa) is an animal model with severe insulin resistance of the skeletal muscle. We investigated whether a defect of insulin-dependent glucose transporter (GLUT 4) translocation might contribute to the pathogenesis of the insulin-resistant state. fa/fa rats, lean controls (Fa/Fa) as well as normal Wistar rats were injected intraperitoneally with insulin and were killed after 2 or 20 min, respectively. Subcellular fractions were prepared from-hind-limb skeletal muscle and were characterized by determination of marker-enzyme activities and immunoblotting applying antibodies against α1 Na+/K+ AT Pase. The relative amounts of GLUT 1 and GLUT 4 were determined in the fractions by immunoblotting with the respective antibodies. Insulin induced an approximately two-fold increase of GLUT 4 in a plasma membrane and transverse tubule enriched fraction and a decrease in the low density enriched membrane fraction in all three groups of rats. There was a high individual variation in GLUT 4 translocation efficiency within the groups. However, no statistically significant difference was noted between the groups. No effect of insulin was detectable on the distribution of GLUT 1 or α1 Na+K+ ATPase. The data suggest that skeletal muscle insulin resistance of obese Zucker rats is not associated with a lack of GLUT 4 translocation.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    ISSN: 1432-0428
    Schlagwort(e): Type 2 (non-insulin-dependent) diabetes mellitus ; insulin resistance ; insulin receptor ; phosphatases ; glycogen synthase ; glucose transporter
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Insulin resistance of skeletal muscle, liver and fat combined with an abnormality of insulin secretion characterizes Type 2 (non-insulin-dependent) diabetes mellitus. There is increasing evidence that the insulin resistance of the skeletal muscle plays a key role early in the development of Type 2 diabetes. As a consequence recent research efforts have focussed on the characterization of insulin signal transduction elements in the muscle which are candidates for a localization of a defect causing insulin resistance i.e. the insulin receptor, phosphatases related to insulin action, glycogen synthase and the glucose transporters. In this review we attempt to summarize present knowledge about abnormalities of these systems in skeletal muscle of Type 2 diabetic and pre-diabetic individuals. We try to classify abnormalities as secondary events or as candidates for putative primary molecular defects which might initiate the development of insulin resistance as early as in the “pre-diabetic” state.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 1432-0428
    Schlagwort(e): Keywords Insulin receptor ; insulin receptor substrate ; protein kinase C ; insulin resistance ; serine phosphorylation.
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Protein kinase C (PKC) isoforms are potentially important as modulators of the insulin signalling chain and could be involved in the pathogenesis of cellular insulin resistance. We have previously shown that phorbol ester stimulated PKC β1 and β2 as well as tumor necrosis factor-α (TNFα) stimulated PKC ɛ inhibit human insulin receptor (HIR) signalling. There is increasing evidence that the insulin receptor substrate-1 (IRS-1) is involved in inhibitory signals in insulin receptor function. The aim of the present study was to elucidate the role of IRS-1 in the inhibitory effects of protein kinase C on human insulin receptor function. HIR, PKC isoforms (α, β1, β2, γ, δ, ɛ, η, θ and ζ) and IRS-1 were coexpressed in human embryonic kidney (HEK) 293 cells. PKCs were activated by preincubation with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (CTPA) (10––7 mol/l) following insulin stimulation. While PKCs α, δ and θ were not inhibitory in HEK 293 cells which were transfected only with HIR and PKC, additional transfection of IRS-1 induced a strong inhibitory effect of these PKC isoforms being maximal for PKC θ (99 ± 1.8 % inhibition of insulin stimulated receptor autophosphorylation, n = 7, p 〈 0.001). No effect was seen with PKC γ, ɛ, ζ and η while the earlier observed insulin receptor kinase inhibition of PKC β2 was further augmented (91 ± 13 %, n = 7, p 〈 0.001 instead of 45 % without IRS-1). The strong inhibitory effect of PKC θ is accompanied by a molecular weight shift of IRS-1 (183 kDa vs 180 kDa) in the sodium dodecyl sulphate polyacrylamide gel. This can be reversed by alkaline phosphatase treatment of IRS-1 suggesting that this molecular weight shift is due to an increased phosphorylation of IRS-1 on serine or threonine residues. In summary, these data show that IRS-1 is involved in the inhibitory effect of the PKC isoforms α, β2, δ and θ and it is likely that this involves serine/threonine phosphorylation of IRS-1. [Diabetologia (1998) 41: 833–838]
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...