Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Insulin receptor isotypes ; Type 2 (non-insulin-dependent) diabetes mellitus ; insulin receptor antibody
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The human insulin receptor exists in two isoforms (HIR-A α-subunit 719 amino acids and HIR-B α-subunit 731 amino acids) which are generated by alternative splicing of a small exon and display distinct patterns of tissue-specific expression. Using the polymerase chain reaction we have recently shown that skeletal muscle of non-diabetic individuals contains predominantly mRNA encoding HIR-A while in skeletal muscle derived from subjects with Type 2 (non-insulin-dependent) diabetes mellitus similar amounts of each mRNA are expressed. We used a polyclonal antibody which discriminates between HIR-A and HIR-B to assess the isoform expression at the protein level. The antibody showed clearly distinct displacement of insulin binding in skeletal muscle membranes of non-diabetic subjects compared to Type 2 diabetic subjects (displacement of specific 125I-insulin binding: 13 non-diabetic subjects 70.0%±14.34, 12 Type 2 diabetic subjects 32.6%±17.45). A control antibody which does not discriminate between both isoforms showed similar displacement of 125I-insulin in membranes of non-diabetic and Type 2 diabetic subjects. These data suggest that the altered expression of receptor isotype mRNA in the skeletal muscle of Type 2 diabetic subjects leads to an altered receptor isoform pattern in the plasma membrane. While skeletal muscle membranes of non-diabetic subjects contain predominantly HIR-A, membranes of Type 2 diabetic subjects show an increased level of HIR-B in addition to HIR-A.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Keywords Insulin receptor ; insulin receptor substrate ; protein kinase C ; insulin resistance ; serine phosphorylation.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Protein kinase C (PKC) isoforms are potentially important as modulators of the insulin signalling chain and could be involved in the pathogenesis of cellular insulin resistance. We have previously shown that phorbol ester stimulated PKC β1 and β2 as well as tumor necrosis factor-α (TNFα) stimulated PKC ɛ inhibit human insulin receptor (HIR) signalling. There is increasing evidence that the insulin receptor substrate-1 (IRS-1) is involved in inhibitory signals in insulin receptor function. The aim of the present study was to elucidate the role of IRS-1 in the inhibitory effects of protein kinase C on human insulin receptor function. HIR, PKC isoforms (α, β1, β2, γ, δ, ɛ, η, θ and ζ) and IRS-1 were coexpressed in human embryonic kidney (HEK) 293 cells. PKCs were activated by preincubation with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (CTPA) (10––7 mol/l) following insulin stimulation. While PKCs α, δ and θ were not inhibitory in HEK 293 cells which were transfected only with HIR and PKC, additional transfection of IRS-1 induced a strong inhibitory effect of these PKC isoforms being maximal for PKC θ (99 ± 1.8 % inhibition of insulin stimulated receptor autophosphorylation, n = 7, p 〈 0.001). No effect was seen with PKC γ, ɛ, ζ and η while the earlier observed insulin receptor kinase inhibition of PKC β2 was further augmented (91 ± 13 %, n = 7, p 〈 0.001 instead of 45 % without IRS-1). The strong inhibitory effect of PKC θ is accompanied by a molecular weight shift of IRS-1 (183 kDa vs 180 kDa) in the sodium dodecyl sulphate polyacrylamide gel. This can be reversed by alkaline phosphatase treatment of IRS-1 suggesting that this molecular weight shift is due to an increased phosphorylation of IRS-1 on serine or threonine residues. In summary, these data show that IRS-1 is involved in the inhibitory effect of the PKC isoforms α, β2, δ and θ and it is likely that this involves serine/threonine phosphorylation of IRS-1. [Diabetologia (1998) 41: 833–838]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0428
    Keywords: Glucose transporter ; human skeletal muscle ; Type 2 diabetes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Insulin resistance of the skeletal muscle is a key feature of Type 2 (non-insulin-dependent) diabetes mellitus. To determine whether a decrease of glucose carrier proteins or an altered subcellular distribution of glucose transporters might contribute to the pathogenesis of the insulin resistant state, we measured glucose transporter numbers in membrane fractions of gastrocnemius muscle of 14 Type 2 diabetic patients and 16 non-diabetic control subjects under basal conditions. Cytochalasin-B binding and immunoblotting with antibodies against transporter-subtypes GLUT 1 and GLUT 4 were applied. The cytochalasin-B binding values (pmol binding sites/g muscle) found in a plasma membrane enriched fraction, high and low density membranes of both groups (diabetic patients and non-diabetic control subjects) suggested a reduced number of glucose transporters in the plasma membranes of the diabetic patients compared to the control subjects (diabetic patients: 1.47 ± 1.01, control subjects: 3.61 ± 2.29,p ≤ 0.003). There was no clear difference in cytochalasin-B binding sites in high and low density membranes of both groups (diabetic patients: high density membranes 3.76 ± 1.82, low density membranes: 1.67 ± 0.81; control subjects: high density membranes 5.09 ± 1.68, low density membranes 1.45 ± 0.90). By Western blotting analysis we determined the distribution of the glucose transporter sub-types GLUT 1 and GLUT 4 in the plasma membrane enriched fraction and low density membranes of seven patients of each group. In agreement with the cytochalasin-B binding data and despite a high variance within one group, the results show a clear decrease of GLUT 4 in the plasma membrane enriched fraction of diabetic patients compared to control subjects. In contrast, we found no difference in the distribution of GLUT 1 in diabetic patients and control subjects. In conclusion, despite a high variance of glucose transporter numbers in the skeletal muscle of different individuals fractionation of muscle samples clearly suggests that the number of GLUT 4 is reduced in the plasma membrane fraction of skeletal muscle of lean diabetic patients in the basal state.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0006-291X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 168 (1990), S. 1089-1094 
    ISSN: 0006-291X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 181 (1991), S. 566-572 
    ISSN: 0006-291X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...