Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Insulin receptor isotypes ; Type 2 (non-insulin-dependent) diabetes mellitus ; insulin receptor antibody
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The human insulin receptor exists in two isoforms (HIR-A α-subunit 719 amino acids and HIR-B α-subunit 731 amino acids) which are generated by alternative splicing of a small exon and display distinct patterns of tissue-specific expression. Using the polymerase chain reaction we have recently shown that skeletal muscle of non-diabetic individuals contains predominantly mRNA encoding HIR-A while in skeletal muscle derived from subjects with Type 2 (non-insulin-dependent) diabetes mellitus similar amounts of each mRNA are expressed. We used a polyclonal antibody which discriminates between HIR-A and HIR-B to assess the isoform expression at the protein level. The antibody showed clearly distinct displacement of insulin binding in skeletal muscle membranes of non-diabetic subjects compared to Type 2 diabetic subjects (displacement of specific 125I-insulin binding: 13 non-diabetic subjects 70.0%±14.34, 12 Type 2 diabetic subjects 32.6%±17.45). A control antibody which does not discriminate between both isoforms showed similar displacement of 125I-insulin in membranes of non-diabetic and Type 2 diabetic subjects. These data suggest that the altered expression of receptor isotype mRNA in the skeletal muscle of Type 2 diabetic subjects leads to an altered receptor isoform pattern in the plasma membrane. While skeletal muscle membranes of non-diabetic subjects contain predominantly HIR-A, membranes of Type 2 diabetic subjects show an increased level of HIR-B in addition to HIR-A.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Keywords Leptin ; phosphatidylinositol-3 kinase ; insulin signalling.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary It was recently shown that leptin impairs insulin signalling, i. e. insulin receptor autophosphorylation and insulin-receptor substrate (IRS)-1 phosphorylation in rat-1 fibroblasts, NIH3T3 cells and HepG2 cells. To evaluate whether leptin might impair the effects of insulin in muscle tissue we studied the interaction of insulin and leptin in a muscle cell system, i. e. C2C12 myotubes. Preincubation of C2C12 cells with leptin (1–500 ng/ml) did not significantly affect insulin stimulated glucose transport and glycogen synthesis (1.8 to 2 fold stimulation); however, leptin by itself (1 ng/ml) was able to mimic approximately 80–90 % of the insulin effect on glucose transport and glycogen synthesis. Both glucose transport as well as glycogen synthesis were inhibited by the phosphatidylinositol-3 (PI3)-kinase inhibitor wortmannin and the protein kinase C inhibitor H7 while no effect was observed with the S6-kinase inhibitor rapamycin. We determined whether the effect of leptin occurs through activation of IRS-1 and PI3-kinase. Leptin did not stimulate PI3-kinase activity in IRS-1 immunoprecipitates; however, PI3-kinase activation could be demonstrated in p85α immunoprecipitates (3.04 ± 1.5 fold of basal). In summary the data provide the first evidence for a positive crosstalk between the signalling chain of the insulin receptor and the leptin receptor. Leptin mimics in C2C12 myotubes insulin effects on glucose transport and glycogen synthesis most likely through activation of PI3-kinase. This effect of leptin occurs independently of IRS-1 activation in C2C12 cells. [Diabetologia (1997) 40: 606–609]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0428
    Keywords: Keywords Insulin receptor ; insulin receptor substrate ; protein kinase C ; insulin resistance ; serine phosphorylation.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Protein kinase C (PKC) isoforms are potentially important as modulators of the insulin signalling chain and could be involved in the pathogenesis of cellular insulin resistance. We have previously shown that phorbol ester stimulated PKC β1 and β2 as well as tumor necrosis factor-α (TNFα) stimulated PKC ɛ inhibit human insulin receptor (HIR) signalling. There is increasing evidence that the insulin receptor substrate-1 (IRS-1) is involved in inhibitory signals in insulin receptor function. The aim of the present study was to elucidate the role of IRS-1 in the inhibitory effects of protein kinase C on human insulin receptor function. HIR, PKC isoforms (α, β1, β2, γ, δ, ɛ, η, θ and ζ) and IRS-1 were coexpressed in human embryonic kidney (HEK) 293 cells. PKCs were activated by preincubation with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (CTPA) (10––7 mol/l) following insulin stimulation. While PKCs α, δ and θ were not inhibitory in HEK 293 cells which were transfected only with HIR and PKC, additional transfection of IRS-1 induced a strong inhibitory effect of these PKC isoforms being maximal for PKC θ (99 ± 1.8 % inhibition of insulin stimulated receptor autophosphorylation, n = 7, p 〈 0.001). No effect was seen with PKC γ, ɛ, ζ and η while the earlier observed insulin receptor kinase inhibition of PKC β2 was further augmented (91 ± 13 %, n = 7, p 〈 0.001 instead of 45 % without IRS-1). The strong inhibitory effect of PKC θ is accompanied by a molecular weight shift of IRS-1 (183 kDa vs 180 kDa) in the sodium dodecyl sulphate polyacrylamide gel. This can be reversed by alkaline phosphatase treatment of IRS-1 suggesting that this molecular weight shift is due to an increased phosphorylation of IRS-1 on serine or threonine residues. In summary, these data show that IRS-1 is involved in the inhibitory effect of the PKC isoforms α, β2, δ and θ and it is likely that this involves serine/threonine phosphorylation of IRS-1. [Diabetologia (1998) 41: 833–838]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0428
    Keywords: Insulin receptor ; skeletal muscle ; proteinkinase C ; non-insulin-dependent diabetes mellitus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Insulin resistance of the skeletal muscle plays a key role in the development of the metabolic endocrine syndrome and its further progression to non-insulin dependent diabetes (NIDDM). Available data suggest that insulin resistance is caused by an impaired signal from the insulin receptor to the glucose transport system and to glycogen synthase. The impaired response of the insulin receptor tyrosine kinase which is found in NIDDM appears to contribute to the pathogenesis of the signalling defect. The reduced kinase activation is not caused by mutations within the insulin receptor gene. We investigated two potential mechanisms that might be relevant for the abnormal function of the insulin receptor in NIDDM, i.e. changes in the expression of the receptor isoforms and the effect of hyperglycaemia on insulin receptor tyrosine kinase activity. The insulin receptor is expressed in two different isoforms (HIRA and HIR-B). We found that HIR-B expression in the skeletal muscle is increased in NIDDM. However, the characterisation of the functional properties of HIR-A and HIR-B revealed no difference in their tyrosine kinase activity in vivo. The increased expression of HIR-B might represent a compensatory event. In contrast, hyperglycaemia might directly inhibit insulin-receptor function. We have found that in rat-1 fibroblasts which overexpressing human insulin receptor an inhibition of the tyrosine kinase activity of the receptor may be induced by high glucose levels. This appears to be mediated through activation of certain protein kinase C isoforms which form stable complexes with the insulin receptor and modulate the tyrosine kinase activity of the insulin receptor through serine phosphorylation of the receptor beta subunit. This mechanism might also be relevant in human skeletal muscle and contribute to the pathogenesis of insulin resistance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0428
    Keywords: Keywords leptin ; leptin receptor ; insulin receptor ; phosphatidylinositol kinase ; janus kinase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We have recently shown that leptin mimicks insulin effects on glucose transport and glycogen synthesis through a phosphatidylinositol-3 (PI) kinase dependent pathway in C2C12 myotubes. The aim of the present study was to identify the signalling path from the leptin receptor to the PI-3 kinase. We stimulated C2C12 myotubes with insulin (100 nmol/l, 5 min) or leptin (0.62 nmol/l, 10 min) and determined PI-3 kinase activity in immunoprecipitates with specific non-crossreacting antibodies against insulin-receptor substrate (IRS 1/IRS 2) and against janus kinase (JAK 1 and JAK 2). While insulin-stimulated PI-3 kinase activity is detected in IRS-1 and IRS-2 immunoprecipitates, leptin-stimulated PI-3 kinase activity is found only in IRS-2 immunoprecipitates, suggesting that the leptin signal to PI-3 kinase occurs via IRS-2 and not IRS-1. Leptin-, but not insulin-stimulated PI-3 kinase activity is also detected in immunoprecipitates with antibodies against JAK-2, but not JAK-1. The data suggest that JAK-2 and IRS-2 couple the leptin signalling pathway to the insulin signalling chain. Since we have also detected leptin-stimulated tyrosine phosphorylation of JAK-2 and IRS-2 in C2C12 myotubes it can be assumed that leptin activates JAK-2 which induces tyrosine phosphorylation of IRS-2 leading to activation of PI-3 kinase. As we could not detect the long leptin receptor isoform in C2C12 myotubes we conclude that this signalling pathway is activated by a short leptin receptor isoform. [Diabetologia (1997) 40: 1358–1362]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0428
    Keywords: Keywords Insulin receptor inhibition, tyrosine kinase activity, serine phosphorylation, protein kinase C.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Aims/hypothesis. Inhibition of the signalling function of the human insulin receptor (HIR) is one of the principle mechanisms which induce cellular insulin resistance. It is speculated that serine residues in the insulin receptor β-subunit are involved in receptor inhibition either as inhibitory phosphorylation sites or as part of receptor domains which bind inhibitory proteins or tyrosine phosphatases. As reported earlier we prepared 16 serine to alanine point mutations of the HIR and found that serine to alanine mutants HIR-994 and HIR-1023/25 showed increased tyrosine autophosphorylation when expressed in human embryonic kidney (HEK) 293 cells. In this study we examined whether these mutant receptors have a different susceptibility to inhibition by serine kinases or an altered tyrosine kinase activity.¶Methods. Tyrosine kinase assay and transfection studies.¶Results. In an in vitro kinase assay using IRS-1 as a substrate we could detect a higher intrinsic tyrosine kinase activity of both receptor constructs. Additionally, a higher capacity to phosphorylate the adapter protein Shc in intact cells was seen. To test the inhibition by serine kinases, the receptor constructs were expressed in HEK 293 cells together with IRS-1 and protein kinase C isoforms β2 and θ. Phorbol ester stimulation of these cells reduced wild-type receptor autophosphorylation to 58 % or 55 % of the insulin simulated state, respectively. This inhibitory effect was not observed with HIR-994 and HIR-1023/25, although all other tested HIR mutants showed similar inhibition induced by protein kinase C.¶Conclusion/interpretation. The data suggest that the HIR-domain which contains the serine residues 994 and 1023/25 is important for the inhibitory effect of protein kinase C isoforms β2 and θ on insulin receptor autophosphorylation. [Diabetologia (2000) 43: 443–449]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0428
    Keywords: Spontaneous hypertensive rat ; insulin receptor kinase ; glucose transporter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The spontaneous hypertensive rat is an animal model characterized by a syndrome of hypertension, insulin resistance and hyperinsulinaemia. To elucidate whether in analogy to other insulin resistant animal models an inactivity of the insulin receptor kinase or an alteration of the glucose transporter (GLUT 4) level in the skeletal muscle might contribute to the pathogenesis of insulin resistance we determined insulin receptor kinase activity and GLUT 4 level in the hindlimbs of spontaneous hypertensive rats and normotensive control rats. Normotensive normoinsulinaemic Lewis and Wistar rats were used as insulin sensitive controls, obese Zucker rats were used as an insulin resistant control with known reduced skeletal muscle insulin receptor kinase activity. Binding of 125I-insulin, crosslinking of 125I-B26-insulin, autophosphorylation in vitro with 32P-ATP and phosphorylation of the synthetic substrate Poly (Glu 4: Tyr 1) were performed after partial purification of solubilized receptors on wheat germ agglutinin columns. GLUT 4 levels were determined by Western blotting of subcellular muscle membranes. Insulin receptors from spontaneous hypertensive rats compared to those from Lewis and Wistar rats showed no difference of the binding characteristics or the in vitro auto- and substrate phosphorylation activity of the receptor, while in the Zucker rats the earlier described insulin receptor kinase defect was clearly evident. Western blots of subcellular muscle membrane fractions with antibodies against GLUT 4 revealed no difference in transporter levels. These data suggest that insulin resistance in spontaneous hypertensive rats is caused neither by an insulin receptor inactivity nor by a decreased number of glucose transporters in the skeletal muscle.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1440
    Keywords: Cachexia ; Diabetes mellitus ; Glutamate transport ; Glucose transport ; Ketone bodies
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Abnormally high postabsorptive venous plasma glutamate levels have been reported for several diseases that are associated with a loss of body cell mass including cancer, human/simian immunodeficiency virus infection, and amyotrophic lateral sklerosis. Studies on exchange rates in well-nourished cancer patients now show that high venous plasma glutamate levels may serve as a bona fide indicator for a decreased uptake of glutamate by the peripheral muscle tissue in the postabsorptive period and may be indicative for a precachectic state. High glutamate levels are also moderately correlated with a decreased uptake of glucose and ketone bodies. Relatively high venous glutamate levels have also been found in non-insulin-dependent diabetes mellitus and to some extent also in the cubital vein of normal elderly subjects, i.e., in conditions commonly associated with a decreased glucose tolerance and progressive loss of body cell mass.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0006-291X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 181 (1991), S. 566-572 
    ISSN: 0006-291X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...