Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
  • 1988  (2)
  • 1
    ISSN: 1432-1106
    Keywords: Zebra finch ; Visually evoked potentials ; Ectrostriatum ; Ipsilateral stimulus responses
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The tectofugal pathway in birds has been reported to process primarily information from the contralateral eye. Although this pathway has access to the contralateral hemisphere by various connections, electrophysiological recordings up to now have failed to demonstrate any excitatory influence of visual stimulation in the higher stations of this pathway. This study is the first to demonstrate an excitatory projection from the ipsilateral eye to the telencephalic projection area of the tectofugal pathway by recordings of visually evoked potentials in the ectostriatum. The excitatory projection probably leads from the eye to the contralateral tectum opticum, then recrosses back to the nucleus rotundus of the ipsilateral side where it reaches the ectostriatum. In normal birds, the ipsilateral stimulus responses in the ectostriatum are smaller in amplitude and have a longer latency than responses to contralateral stimuli. In unilaterally enucleated birds, the ipsilateral response is enhanced in the ectostriatum and can be detected in the nucleus rotundus, too. The results suggest that in normal birds the ipsilateral response is inhibited to a high degree by spontaneous activity of the contralateral eye. Possibly, this counterbalanced inhibition provides a mechanism for weighting information from the left and right eye field in order to ensure adequate processing of stimuli.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 71 (1988), S. 33-46 
    ISSN: 1432-1106
    Keywords: Columns ; Visual cortex ; Orientation ; Ocular dominance ; Maps ; Cat ; Development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In the visual cortex of four adult cats ocular dominance and orientation columns were visualized with (3H)proline and (14C)deoxyglucose autoradiography. The two columnar systems were reconstructed from serial horizontal sections or from flat-mount preparations and graphically superimposed. They share a number of characteristic features: In both systems the columns have a tendency to form regularly spaced parallel bands whose main trajectory is perpendicular to the border between areas 17 and 18. These bands frequently bifurcate or terminate in blind endings. The resulting irregularities are much more pronounced in the ocular dominance than in the orientation system. The periodicity of the columnar patterns was assessed along trajectories perpendicular to the main orientation of the bands and differed in the two columnar systems. The spacing of the ocular dominance stripes was significantly narrower than the spacing of orientation bands. The mean periodicity of a particular columnar system was virtually identical in the two hemispheres of the same animal but it differed substantially in different animals. However, the spacing of orientation columns covaried with that of the ocular dominance columns, the ratios of the mean spacings of the two columnar systems being similar in the four cats. The superposition of the two columnar systems revealed no obvious topographic relation between any of the organizational details such as the location of bifurcations, blind endings and intersections. We suggest the following conclusions: 1. The developmental processes generating the two columnar systems seem to obey the same algorithms but they act independently of each other. 2. The space constants of the two systems are rigorously specified and appear to depend on a common variable. 3. The main orientation of the bands in both columnar systems is related to a) the representation of the vertical meridian, b) the anisotropy of the cortical magnification factor, and c) the tangential spread of intracortical connections.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...