Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (4)
  • 1990  (4)
Material
Years
  • 1990-1994  (4)
Year
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 93 (1990), S. 5327-5336 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The ultraviolet-photochemistry of molecularly adsorbed oxygen on Pd(111) has been studied using pulsed laser light with 6.4 eV photon energy. Three processes occur upon irradiation: desorption of molecular oxygen, conversion between adsorption states, and dissociation to form adsorbed atomic oxygen. By using time-of-flight spectroscopy to detect the desorbing molecular oxygen and post-irradiation thermal desorption spectroscopy (TDS) to characterize the adsorbate state, a detailed picture of the photochemical processes is obtained. The data indicate that the O2 molecules desorbing with low translational energies from the saturated surface as well as the conversion of adsorbed molecules between binding states are induced by the photoinduced build-up of atomic oxygen on the surface. Analysis of a proposed reaction model reproduces the observed data and yields detailed rates. Polarization analysis indicates that the photochemical processes are initiated by electronic excitations of the substrate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 3154-3169 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Ultraviolet irradiation of NO2 adsorbed on top of a NO saturated Pd(111) surface causes the photodissociation of NO2/N2O4 and results in the desorption of NO molecules. This process has been studied using excitation energies between 3.5 and 6.4 eV. At a photon energy of 6.4 eV, a cross section of 3×10−18 cm2 is found. Using laser-induced fluorescence to detect the desorbed NO molecules, fully state-resolved data detailing the energy channeling into different degrees of freedom has been obtained. Two desorption channels are found, one characterized by nonthermal state populations, and one showing accommodation to the surface. The yield of the fast channel shows a marked increase above 4 eV photon energy. The slow channel is interpreted as being due to NO molecules which, after formation, undergo a trapping–desorption process. A polarization experiment indicates that the photodissociation is initiated by excitation of metal electrons rather than direct absorption by the adsorbate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 1509-1510 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Ultraviolet-laser irradiation (6.4 eV and 5.0 eV) of the first layer of water adsorbed on a Pd(111) surface at 90 K leads to desorption of H2O and to conversion of the adsorbed state as manifested in the thermal desorption spectra. The latter effect is attributed to photodissociation of water on the surface. Time-of-flight measurements show that water molecules desorb with the same translational energy of about 600 K for both photon energies. While desorption is suppressed with adsorbed multilayers, conversion within the first layer still proceeds.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 343 (1990), S. 355-357 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The catalytic formation of CO2 from CO and O2 on platinum proceeds by recombination of chemisorbed CO and O species, the latter originating from dissociative adsorption of O2. Under low-pressure conditions and for certain sets of control parameters (CO and O2 partial pressures, ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...