Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (7)
  • 2005-2009  (5)
  • 1990-1994  (1)
  • 2022  (7)
  • 2007  (5)
  • 1991  (1)
Source
Years
  • 2020-2024  (7)
  • 2005-2009  (5)
  • 1990-1994  (1)
  • 2020-2023  (3)
Year
Keywords
Language
  • 1
    Publication Date: 2020-08-05
    Language: English
    Type: masterthesis , doc-type:masterThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-15
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-16
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-05
    Description: This article is about the optimal track allocation problem (OPTRA) to find, in a given railway network, a conflict free set of train routes of maximum value. We study two types of integer programming formulations: a standard formulation that models block conflicts in terms of packing constraints, and a new extended formulation that is based on additional configuration' variables. We show that the packing constraints in the standard formulation stem from an interval graph, and that they can be separated in polynomial time. It follows that the LP relaxation of a strong version of this model, including all clique inequalities from block conflicts, can be solved in polynomial time. We prove that the extended formulation produces the same LP bound, and that it can also be computed with this model in polynomial time. Albeit the two formulations are in this sense equivalent, the extended formulation has advantages from a computational point of view, because it features a constant number of rows and is therefore amenable to standard column generation techniques. Results of an empirical model comparison on mesoscopic data for the Hannover-Fulda-Kassel region of the German long distance railway network are reported.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/postscript
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-05
    Description: The \emph{optimal track allocation problem} (\textsc{OPTRA}), also known as the train routing problem or the train timetabling problem, is to find, in a given railway network, a conflict-free set of train routes of maximum value. We propose a novel integer programming formulation for this problem that is based on additional configuration' variables. Its LP-relaxation can be solved in polynomial time. These results are the theoretical basis for a column generation algorithm to solve large-scale track allocation problems. Computational results for the Hanover-Kassel-Fulda area of the German long distance railway network involving up to 570 trains are reported.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/postscript
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-11-16
    Description: The timetable is the essence of the service offered by any provider of public transport'' (Jonathan Tyler, CASPT 2006). Indeed, the timetable has a major impact on both operating costs and on passenger comfort. Most European agglomerations and railways use periodic timetables in which operation repeats in regular intervals. In contrast, many North and South American municipalities use trip timetables in which the vehicle trips are scheduled individually subject to frequency constraints. We compare these two strategies with respect to vehicle operation costs. It turns out that for short time horizons, periodic timetabling can be suboptimal; for sufficiently long time horizons, however, periodic timetabling can always be done in an optimal way'.
    Keywords: ddc:510
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/postscript
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-03-20
    Description: The covering of a graph with (possibly disjoint) connected subgraphs is a funda-mental problem in graph theory. In this paper, we study a version to cover a graph’svertices by connected subgraphs subject to lower and upper weight bounds, and pro-pose a column generation approach to dynamically generate feasible and promisingsubgraphs. Our focus is on the solution of the pricing problem which turns out to bea variant of the NP-hard Maximum Weight Connected Subgraph Problem. We com-pare different formulations to handle connectivity, and find that a single-commodityflow formulation performs best. This is notable since the respective literature seemsto have widely dismissed this formulation. We improve it to a new coarse-to-fine flowformulation that is theoretically and computationally superior, especially for largeinstances with many vertices of degree 2 like highway networks, where it provides aspeed-up factor of 5 over the non-flow-based formulations. We also propose a pre-processing method that exploits a median property of weight-constrained subgraphs,a primal heuristic, and a local search heuristic. In an extensive computational studywe evaluate the presented connectivity formulations on different classes of instances,and demonstrate the effectiveness of the proposed enhancements. Their speed-upsessentially multiply to an overall factor of well over 10. Overall, our approach allowsthe reliable solution of instances with several hundreds of vertices in a few min-utes. These findings are further corroborated in a comparison to existing districtingmodels on a set of test instances from the literature
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-08-02
    Description: The Flight Planning Problem is to find a minimum fuel trajectory between two airports in a 3D airway network under consideration of the wind. We show that this problem is NP-hard, even in its most basic version. We then present a novel A∗ heuristic, whose potential function is derived from an idealized vertical profile over the remaining flight distance. This potential is, under rather general assumptions, both admissible and consistent and it can be computed efficiently. The method outperforms the state-of-the-art heuristic on real-life instances.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-08-02
    Description: Line planning in public transport involves determining vehicle routes and assigning frequencies of service such that travel demands are satisfied. We evaluate how line plans, which are optimal with respect to in-motion costs (IMC), the objective function depending purely on arc-lengths for both user and operator costs, performs with respect to the value of resources consumed (VRC). The latter is an elaborate, socio-economic cost function which includes discomfort caused by delay, boarding and alighting times, and transfers. Even though discomfort is a large contributing factor to VRC and is entirely disregarded in IMC,  we observe that the two cost functions are qualitatively comparable.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-08-01
    Description: We consider the line planning problem in public transport in the Parametric City, an idealized model that captures typical scenarios by a (small) number of parameters. The Parametric City is rotation symmetric, but optimal line plans are not always symmetric. This raises the question to quantify the symmetry gap between the best symmetric and the overall best solution. For our analysis, we formulate the line planning problem as a mixed integer linear program, that can be solved in polynomial time if the solutions are forced to be symmetric. We prove that the symmetry gap is small when a specific Parametric City parameter is fixed, and we give an approximation algorithm for line planning in the Parametric City in this case. While the symmetry gap can be arbitrarily large in general, we show that symmetric line plans are a good choice in most practical situations.
    Language: German
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...