Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (4)
  • 1998  (2)
  • 1996  (2)
Material
Years
  • 1995-1999  (4)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Chester : International Union of Crystallography (IUCr)
    Journal of synchrotron radiation 5 (1998), S. 162-167 
    ISSN: 1600-5775
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Geosciences , Physics
    Notes: SPring-8 is a third-generation synchrotron radiation source operating in the soft and hard X-ray region. It consists of an injector linac of 1 GeV, a booster synchrotron of 8 GeV and a storage ring with a natural emittance of 5.9 nm rad. The storage ring can accommodate 61 beamlines in total, and 26 of them are under construction. The project has been carried out jointly by JAERI and RIKEN and construction of the facility started in 1991. Commissioning of the injector linac was started in August 1996 and an 8 GeV electron beam was injected into the storage ring in March 1997. The first synchrotron radiation from a bending magnet was observed at the front end of the beamline on 25 March and radiation from an undulator was observed on 23 April. On-beam testing of seven beamlines, four of them from in-vacuum undulators and three from bending magnets, started in July. The maximum stored current is currently fixed at 20 mA and the lifetime at maximum current is longer than 20 h. The dedication is scheduled for October 1997.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chester : International Union of Crystallography (IUCr)
    Journal of synchrotron radiation 3 (1996), S. 247-247 
    ISSN: 1600-5775
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1600-5775
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Geosciences , Physics
    Notes: A low-energy positron beam is a unique probe of materials. In high-energy electron and positron storage rings it is possible to generate intense synchrotron radiation with a photon energy of 1–3 MeV by installing a high-field (8–10 T) superconducting wiggler. High-energy photons are converted to low-energy positrons by using a suitable target–moderator system. For an 8 GeV electron storage ring at a beam current of 100 mA, final yields are estimated to be about 108–1010 slow-e+ s−1 or larger depending on the moderation efficiency, with the size of the positron source 101–102 cm2. In the present work a wiggler magnetic system of 10 T is proposed. The main parameters of the superconducting wiggler are presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1600-5775
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Geosciences , Physics
    Notes: A low-energy positron beam is a unique probe of Fermi surfaces, defects, surfaces and interfaces. In high-energy electron and positron storage rings (E 〉 6 GeV) it is possible to generate intense synchrotron radiation with 1–3 MeV photons by installing a high-field superconducting wiggler. The strength of the wiggler should be 8̃–12 T. High-energy photons are emitted from the wiggler and converted to low-energy positrons by using a suitable target-moderator system. For an 8 GeV electron storage ring at a beam current of 100 mA, final yields are estimated to be 1̃010–1012 (slow-e+ s−1) with the size of positron source 1̃02-103 cm2. The possibility of increasing the brightness of the low-energy positron beam is discussed. Advantages of using synchrotron radiation for producing positrons are pointed out. The effect of a superconducting wiggler on the stored electron beam is also discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...