Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009
  • 1995-1999  (3)
  • 1965-1969
  • 1998  (3)
  • Polymer and Materials Science  (2)
  • Key words Amphiphilic urethane acrylate hydrogels  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 276 (1998), S. 342-348 
    ISSN: 1435-1536
    Keywords: Key words Amphiphilic urethane acrylate hydrogels ; ionic groups ; polyethers ; heterophasic gel structure ; hydrophobic interaction ; salt- and pH-dependent
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  Amphiphilic urethane acrylate hydrogels containing ionic group (dimethylopropionic acid, DMPA) were prepared by varying the molecular weight of the soft segment (polyether type, PTMG) and type of diisocyanate, and their swelling behaviors and mechanical properties were examined. They showed amphiphilic property due to the hydrophilic ionic groups and hydrophobic polyethers comprising the urethane acrylate network. Heterophasic gel structure could be found for the hydrogels prepared in water, but not for the hydrogels in organic solvent (1,4-dioxane), through scanning electron microscopy. Because of this heterophasic gel structure, they were able to take in a large amount of water as well. The hydrophobic interaction generated by the polyether soft segments between urethane acrylate network chains decreased the degree of swelling, however, increased reversibly the tensile strengths at equilibrium swelling state. MDI-based hydrogel showed low swelling ratio and high tensile strength because of its ordered hard domain structure. These amphiphilic urethane acrylate hydrogels showed salt- and pH-dependent swelling behaviors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 36 (1998), S. 2865-2872 
    ISSN: 0887-624X
    Keywords: alkali-soluble random copolymer ; polymeric emulsifier ; aggregate ; hairy ASR layer ; rate of polymerization ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: An alkali-soluble random copolymer (ASR), poly(styrene/α-methylstyrene/acrylic acid), was used as a polymeric emulsifier in the emulsion polymerization of styrene. The calorimetric technique was applied to study the kinetics of emulsion polymerization of styrene using ASR and a conventional ionic emulsifier, sodium dodecyl benzenesulfonate (SDBS). ASR could form aggregates like micelles, and the solubilization ability of the aggregates was dependent on the neutralization degree of ASR. The rate of polymerization in the ASR system was lower than that in the SDBS system. This result can be explained by the creation of a hairy ASR layer around the particle surface, which decreases the diffusion rate of free radicals through this region. Although a decrease in particle size was observed, the rate of polymerization decreased with increasing ASR concentration. The higher the concentration of ASR is, the thicker and denser ASR layer may be, and the more difficult it would therefore be for radicals to reach the particle through this layer of ASR. The rate of polymerization decreased with increasing the neutralization degree of ASR. The aggregates with high neutralization of ASR are less efficient in solubilizing the monomer and capturing initiator radicals than that of the lower neutralization degree, which leads to decrease in rate of polymerization. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2865-2872, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1821-1830 
    ISSN: 0887-6266
    Keywords: reverse osmosis ; poly(aminostyrene) ; benzenediamines ; acyl chlorides ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Thin-film composite reverse osmosis membranes of polyamides were prepared by interfacial polymerization. Various benzenediamines and poly(aminostyrene) were interfacially reacted with various acyl chlorides to prepare a skin layer of composite membranes. Among the membranes prepared from the structural isomeric monomers of benzenediamines and acyl chlorides, i.e., the same chemical composition but different in the position of functional groups on the aromatic ring, the membrane with the best salt rejection was obtained when the reacting groups forming amide are located at the same position on the aromatic ring. Membranes prepared by interfacially reacting various diamines with trimesoyl chloride revealed that the salt rejection depends on the linear chain structure of polyamides and network formed by crosslinking. Membranes obtained by interfacial polymerization of poly(aminostyrene) with trimesoyl chloride showed higher water flux but lower salt rejection than those obtained by interfacial polymerization of various benzenediamines with trimesoyl chloride. Membranes obtained here showed the typical trade-off behavior between salt rejection and water flux. However, membranes prepared by interfacially reacting trimesoyl chloride with a mixture of poly(aminostyrene) and m-phenylenediamine or a mixture of poly(aminostyrene), m-phenylenediamine, and diaminobenzoic acid showed a performance advantage over usual membranes, i.e., a large positive deviation from the usual trade-off trend. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1821-1830, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...