Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
  • 2001  (2)
Material
Years
  • 2000-2004  (2)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    British journal of dermatology 145 (2001), S. 0 
    ISSN: 1365-2133
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Background Ultrasonography has been used as a non-invasive approach to measure skin thickness. To date there have been no studies on diurnal variations in skin thickness. Objectives To evaluate diurnal variations in skin thickness and to compare these with corresponding echogenicity and skin elasticity. Methods Measurements by ultrasonography B-mode and by Cutometer SEM 575 were carried out in the morning and in the afternoon on 20 men and 20 women (mean age 30 years) on three areas of the face (forehead, corner of the eye and cheek), the forearm and the upper arm, and the flank, thigh and calf. Results From the morning to the afternoon, the skin thickness in both sexes significantly decreased on three areas of the face, the forearm and the upper arm, but significantly increased on the thigh and calf. In parallel, the echogenicity significantly increased from the morning to the afternoon on the three areas of the face, the forearm and the upper arm, but decreased significantly on the thigh and calf. Measurements of mechanical properties at four sites demonstrated that from the morning to the afternoon, the major parameters of skin elasticity Ue* and Uf* increased significantly in both sexes on two areas of the face and slightly on the forearm, but decreased significantly on the calf. Conclusions The diurnal profiles of skin thickness and skin elasticity in the upper half of the body are the reverse of those in the lower half of the body. These findings suggest that shifts of dermal fluid from the face to the leg by gravity during the day cause the diurnal variation in skin thickness.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    British journal of dermatology 144 (2001), S. 0 
    ISSN: 1365-2133
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Background  We have previously reported that ultraviolet (UV) B irradiation induces a loss of linearity in the three-dimensional structure of dermal elastic fibres, which results in the reduction of elastic properties of the skin and leads to wrinkle formation. We further reported that repair of wrinkles by all-trans retinoic acid is accompanied by recovery of the linearity of elastic fibres. Carbon dioxide (CO2) lasers are widely used for treating wrinkles in cosmetic surgery. Objectives  To perform CO2 laser treatment of wrinkles induced in rat skin by UVB irradiation and to evaluate changes in the three-dimensional structure of dermal elastic fibres during wrinkle repair. Methods  Wrinkles were induced in the hind limb skin of Sprague–Dawley rats by UVB irradiation (130 mJ cm−2 three times weekly for 6 weeks), followed by CO2 laser treatment (11·3 J cm−2). The surface appearance of the skin was evaluated by replica observation 6 and 10 weeks after CO2 laser treatment followed by measurement of mechanical properties using a Cutometer. Subsequently, perfusion fixation and digestion with formic acid were performed and elastic fibres were observed by scanning electron microscopy (SEM). Image analysis of SEM micrographs was carried out to evaluate the linearity in the three-dimensional structure of elastic fibres. Results  Six weeks after CO2 laser treatment, all parameters of skin mechanical properties in the UVB-irradiated group recovered to levels of the control non-irradiated group, accompanied by repair of wrinkles and a significant increase in linearity of the three-dimensional structure of elastic fibres. Conclusions  These findings indicate that CO2 laser treatment has a therapeutic potential to repair wrinkles to non-irradiated levels through recovery of the three-dimensional structure of elastic fibres.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...