Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (5)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 9 (2002), S. 128-136 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of rotation on the heat and particle transport is measured in the DIII–D tokamak [Fusion Technol. 8, 441 (1985)] for high-confinement mode (H-mode) plasmas with edge localized modes. In a novel experiment, transport is compared for nearly identical scans of the relative gyroradius in co- and counter-rotating plasmas. Since the plasma profiles are the same, the difference in the transport scaling can be attributed to changes in the sheared E×B flow caused by the shift in the toroidal plasma velocity. The ion heat and particle transport are found to be sensitive to the change in the rotation direction and magnitude whereas the electron heat transport is not. Simulations using a gyroLandau-fluid drift wave transport model show that the variation in the ion heat transport for co/counter rotation is due to changes in the E×B shear stabilization, but the electrons appear to be governed by a different transport mechanism. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Quiescent double barrier discharges (QDB) on DIII-D [Luxon et al., Fusion Technol. 8, Part 2A, 441 (1985)] exhibit near steady high performance (βNH∼7) with a quiescent H-mode edge, i.e., free of edge localized modes (ELMs), but with effective particle control and strongly peaked density profiles. These QDB discharges exhibit an internal transport barrier with low ion thermal transport despite incomplete turbulence suppression. Very short correlation lengths, which reduce the transport step size, however, characterize the residual turbulence. This observation is consistent with simulations using the GLF23 [Waltz et al., Phys. Plasmas 4, 2482 (1997)] model, which reproduce the core ion temperature profile even in the presence of finite turbulence. Increased retention of high-Z impurities is observed and core nickel concentrations (an intrinsic impurity in DIII-D) are as high as 0.3%. To quantify impurity transport, trace impurity injection has been performed in steady QDB discharges showing a fast influx followed by a slow pump out. The measured decay times of the core concentration of two nonrecycling impurities, F(Z=9) and Ca(Z=22), are 299 and 675 ms, respectively, while the energy confinement time is 111 ms. Time dependent analysis of neon influx yields both diffusivities and inward convection velocities significantly greater than neoclassical predictions in the same region of the plasma where measured ion thermal transport is near neoclassical predictions yet significant turbulence is observed. The boundary of these discharges is characterized by a saturated coherent magnetohydrodynamic mode, the edge harmonic oscillation, which takes the place of ELMs in facilitating particle control by allowing particle transport to the open field lines, where both wall- and cryopumping play a major role in particle exhaust. Hot (∼5 keV) ions observed in the outer scrape-off layer may enhance wall pumping. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The predictions of gyrokinetic and gyrofluid simulations of ion-temperature-gradient (ITG) instability and turbulence in tokamak plasmas as well as some tokamak plasma thermal transport models, which have been widely used for predicting the performance of the proposed International Thermonuclear Experimental Reactor (ITER) tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 1, p. 3], are compared. These comparisons provide information on effects of differences in the physics content of the various models and on the fusion-relevant figures of merit of plasma performance predicted by the models. Many of the comparisons are undertaken for a simplified plasma model and geometry which is an idealization of the plasma conditions and geometry in a Doublet III-D [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] high confinement (H-mode) experiment. Most of the models show good agreements in their predictions and assumptions for the linear growth rates and frequencies. There are some differences associated with different equilibria. However, there are significant differences in the transport levels between the models. The causes of some of the differences are examined in some detail, with particular attention to numerical convergence in the turbulence simulations (with respect to simulation mesh size, system size and, for particle-based simulations, the particle number). The implications for predictions of fusion plasma performance are also discussed. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Significant progress has been made in obtaining high-performance discharges for many energy confinement times in the DIII-D tokamak [J. L. Luxon et al., Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159]. Normalized performance (measured by the product of βNH89 and indicative of the proximity to both conventional β limits and energy confinement quality, respectively) ∼10 has been sustained for 〉5 τE with qmin〉1.5. These edge localized modes (ELMing) H-mode discharges have β∼5%, which is limited by the onset of resistive wall modes slightly above the ideal no-wall n=1 limit, with approximately 75% of the current driven noninductively. The remaining Ohmic current is localized near the half-radius. The DIII-D electron cyclotron heating system is being upgraded to replace this inductively driven current with localized electron cyclotron current drive (ECCD). Density control, which is required for effective ECCD, has been successfully demonstrated in long-pulse high-performance ELMing H-mode discharges with βNH89∼7 for up to 6.3 s. In plasma shapes compatible with good density control in the present divertor configuration, the achieved βN is somewhat less than that in the high βNH89=10 discharges. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 9 (2002), S. 1676-1691 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Results are presented for simulations of tokamak discharges exhibiting internal transport barriers (ITBs) with significant reductions in the core thermal transport using a comprehensive theory-based model for drift-wave transport. The predicted temperature and toroidal velocity profiles from the GLF23 model are compared against the experimental data for twenty-two L- and high-confinement mode (H-mode) ITB discharges from three large tokamaks including DIII-D [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)], Tokamak Fusion Test Reactor [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)], and Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)]. The combined effects of E×B shear and Shafranov shift stabilization of the turbulent transport are essential in reproducing the barriers in the plasma core. Shafranov shift or α-stabilization is found to be an essential ingredient in suppressing the thermal transport due to ion and electron temperature gradient and trapped electron modes that can result in simultaneous electron and ion barriers. Another consequence of α-stabilization is that the power threshold for ITB formation is predicted to decrease for strongly reversed magnetic shear cases in comparison with weakly reversed shear cases. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...