Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 2898-2908 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The formation of internal transport barriers observed in both Joint European Torus (JET) [P. H. Rebut, R. J. Bickerton, and B. E. Keen, Nucl. Fusion 25, 1011 (1985)] and Doublet III-D Tokamak (DIII-D) [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)] are reproduced in predictive transport simulations. These simulations are carried out for two JET-optimized shear discharges and two DIII-D negative central shear discharges using the Multi-Mode model in the time-dependent 1-1/2-D BALDUR transport code [C. E. Singer et al., Comput. Phys. Commun. 49, 275 (1988)]. The Weiland model is used for drift modes in the Multi-Mode model in combination with either Hahm–Burrell or Hamaguchi–Horton flow shear stabilization mechanisms, where the radial electric field is inferred from the measured toroidal velocity profile and the poloidal velocity profile computed using neoclassical theory. The transport barriers are apparent in both the ion temperature and thermal diffusivity profiles of the simulations. The timing and location of the internal transport barriers in the simulations and experimental data for the DIII-D cases are in good agreement, though some differences remain for the JET discharges. The formations of internal transport barriers are interpreted as resulting from a combination of E×B flow shear and weak magnetic shear mechanisms. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The predictions of gyrokinetic and gyrofluid simulations of ion-temperature-gradient (ITG) instability and turbulence in tokamak plasmas as well as some tokamak plasma thermal transport models, which have been widely used for predicting the performance of the proposed International Thermonuclear Experimental Reactor (ITER) tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 1, p. 3], are compared. These comparisons provide information on effects of differences in the physics content of the various models and on the fusion-relevant figures of merit of plasma performance predicted by the models. Many of the comparisons are undertaken for a simplified plasma model and geometry which is an idealization of the plasma conditions and geometry in a Doublet III-D [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] high confinement (H-mode) experiment. Most of the models show good agreements in their predictions and assumptions for the linear growth rates and frequencies. There are some differences associated with different equilibria. However, there are significant differences in the transport levels between the models. The causes of some of the differences are examined in some detail, with particular attention to numerical convergence in the turbulence simulations (with respect to simulation mesh size, system size and, for particle-based simulations, the particle number). The implications for predictions of fusion plasma performance are also discussed. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 2 (1990), S. 1486-1491 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Transient radiation, resulting from a brief, deliberate perturbation of the velocity distribution of superthermal tokamak electrons, can be more informative than the steady background radiation that is present in the absence of the perturbation. It is possible to define a number of interesting inverse problems that exploit the two-dimensional frequency-time data of the transient radiation signal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...