Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The predictions of gyrokinetic and gyrofluid simulations of ion-temperature-gradient (ITG) instability and turbulence in tokamak plasmas as well as some tokamak plasma thermal transport models, which have been widely used for predicting the performance of the proposed International Thermonuclear Experimental Reactor (ITER) tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 1, p. 3], are compared. These comparisons provide information on effects of differences in the physics content of the various models and on the fusion-relevant figures of merit of plasma performance predicted by the models. Many of the comparisons are undertaken for a simplified plasma model and geometry which is an idealization of the plasma conditions and geometry in a Doublet III-D [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] high confinement (H-mode) experiment. Most of the models show good agreements in their predictions and assumptions for the linear growth rates and frequencies. There are some differences associated with different equilibria. However, there are significant differences in the transport levels between the models. The causes of some of the differences are examined in some detail, with particular attention to numerical convergence in the turbulence simulations (with respect to simulation mesh size, system size and, for particle-based simulations, the particle number). The implications for predictions of fusion plasma performance are also discussed. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The Helicity Injected Torus [HIT-II: T. Jarboe et al., Phys. Plasmas 5, 1807 (1998)] is a low-aspect-ratio tokamak capable of both inductive (ohmic) and Coaxial Helicity Injection (CHI) current drive. HIT-II is modest in size (major radius R=0.3 m, minor radius a=0.2 m, and on-axis toroidal field of up to 0.5 T), but has demonstrated 200 kA of toroidal plasma current, using either CHI or induction separately. The loop voltage, boundary flux, and plasma equilibrium are controlled by a real-time flux feedback system. HIT-II ohmic plasmas exhibit reconnection events during both the current ramp-up and decay, events that relax the current profile while conserving the magnetic helicity. A new operating regime for CHI plasmas, using a double-null divertor (DND) boundary flux, has been explored. DND CHI plasmas exhibit good shot-to-shot reproducibility, low impurity content, minimal shorting current in the absorber region, and EFIT-reconstructed equilibria consistent with significant closed-flux core regions [EFIT: L. Lao et al., Nucl. Fusion 25, 1611 (1985)]. HIT-II DND CHI discharges also exhibit a continuous n=1 mode at the outer midplane, a mode that has been correlated experimentally with current-profile relaxation. A detailed explanation of helicity injection current drive has been developed, which is consistent with experimental observations of HIT and HIT-II discharges. According to this mechanism, asymmetric distortion of the n=1 mode structure generates current drive in the core plasma by dynamo action, relaxing the CHI-driven current profile. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...