Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • 1990-1994  (1)
  • basal ganglia  (3)
  • 1
    ISSN: 1435-1463
    Keywords: [14C]-2DG uptake ; MPTP ; marmoset ; basal ganglia ; behavioural recovery
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The “short-term” (0.7 ± 0.1 months post-MPTP) and “long-term” effects (36.7 ± 4.4 months) of MPTP treatment on motor behaviour and [14C]-2DG uptake were investigated in the common marmoset. The subcutaneous administration of MPTP greatly reduced locomotor activity (−94% with respect to controls) and induced motor disability in the “short-term” MPTP-treated marmoset group. In the “long-term” MPTP group, MPTP treatment did not significantly affect locomotor activity (−27% with respect to controls) and there was partial recovery of motor disability. In the “short-term” MPTP group, there were increases in [14C]-2DG uptake in the GP1 (+31 to +37%), SNc (+34 to +42%), VTA (+35%), LC (+23%), PPN (+19%) and in the VA (+19%), VL (+20%) and AM (+17%) thalamic nuclei. [14C]-2DG uptake was decreased in the STN (−15%). In the “long-term” MPTP group, [14C]-2DG uptake was increased in the GP1 (+18%), SNc (+27%), VTA (+25%), PPN (+19%), ventral caudate nucleus (+18 to +23%), NAc (+22%), F.Ctx (+18%) and in the VA (+34%), VL (+28%), AV (+33%) and AM (+24%) thalamic nuclei. [14C]-2DG uptake was unchanged in the STN. The increase in metabolic activity of the surviving DA neurones and/or the reactive gliosis may account for the initial increase in [14C]-2DG uptake in the SNc and VTA. On the other hand, in the “long-term” MPTP-treated animals the increase in [14C]-2DG uptake in the SNc (though less than in the “short-term” MPTP group), ventral caudate and NAc may reflect the regenerative changes in the dopaminergic system in these areas. Despite the behavioural recovery, [14C]-2DG uptake remained elevated in the target areas for medial paludal output (the thalamic nuclei and PPN). However, the attenuation of the changes in [14C]-2DG uptake in the GP1 and STN of “longterm” MPTP-treated marmosets suggest that the striato-GPl and GP1-STN outputs closely reflect motor function in this primate model of Parkinson's disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1463
    Keywords: Preproenkephalin mRNA ; preprotachykinin mRNA ; basal ganglia ; dopamine agonists
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Striatal mRNA expression for preproenkephalin (PPE) and preprotachykinin (PPT) was studied in unilateral 6-OHDA lesioned rats treated subchronically with a range of selective and non-selective D-1 or D-2 dopamine (DA) agonists. Apomorphine (5mg/kg sc), pergolide (0.5mg/kg sc), SKF 38393 (5mg/kg sc), SKF 80723 (1.5mg/kg sc), and quinpirole (5mg/ kg sc), or 0.9% saline (150μl sc) were all given twice daily (except pergolide: once daily) for 7 days. The abundance of PPE mRNA was not altered by any of these DA agonists in the intact striatum contralateral to the 6-OHDA lesion. Only apomorphine and quinpirole increased the abundance of PPT mRNA in the intact striatum. In saline treated 6-OHDA lesioned animals PPE mRNA was elevated (+160%, p 〈 0.005) and PPT mRNA decreased (−36%, p 〈 0.005) in the denervated striatum. The up-regulation of striatal PPE mRNA in the lesioned striatum was reversed only by pergolide. The downregulation of striatal PPT mRNA in the lesioned striatum was reversed only by apomorphine. The differential sensitivity of the striatal PPE message to the long-acting DA agonist pergolide, and of the striatal PPT message to the mixed D-1/D-2 DA agonist apomorphine suggests that the striatopallidal enkephalinergic pathways are mainly regulated by prolonged DA receptor stimulation, whereas the striatonigral substance P pathways are mainly regulated by mixed D-1/D-2 DA receptor stimulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1435-1463
    Keywords: MPTP ; peptides ; basal ganglia ; common marmoset ; Parkinson's disease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Aged common marmosets were treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 0.5–2.0 mg/kg/week i.p.) for 16 or 24 weeks, observed for a total of 30 weeks and then killed for measurement of biochemical pramaters in basal ganglia. The MPTP treatment induced a marked depletion in dopamine, 3,4-dihydroxyphenylacetic acid and homovanillic acid levels in the caudate nucleus and putamen. In contrast, the concentrations of five neuropeptides: [Met5]-enkephalin, [Leu5]-enkephalin, cholecystokinin, substance P and neurotensin as measured by a combined HPLC/RIA method, remained unaltered in all basal ganglia regions examined. Enkephalin precursor levels, as reflected by cryptic [Met5]-enkephalin content, were increased in the putamen, but not in the caudate nucleus, as a consequence of MPTP administration. Cryptic [Leu5]-enkephalin content remained unchanged in the striatum of MPTP treated marmosets. Overall, these results suggest an increase in striatal [Met5]-enkephalin release following chronic MPTP treatment of aged marmosets. However, the chronic treatment of aged marmosets with MPTP does not reproduce the neuropeptide alterations characteristic of Parkinson's disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...