Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 696-702 
    ISSN: 0006-3592
    Keywords: Bacillis subtilis ; spore mutant ; fed-batch ; continuous culture ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: To alleviate plasmid instability and to prolong the production phase of subtilisin, integrable plasmid and spore mutants are used. Compared with batch-type shake flask cultures, spore mutants' ability to produce subtilisin can be well pronounced in fed-batch and continuous cultures. Hence, the two culture methods make it possible to identify the peculiar characteristics of the spore mutants unobtainable in batch culture. Spore mutants can enhance subtilisin productivity and prolong subtilisin production time in fed-batch culture as well as enable us to use very low dilution rates (〈0.1 h-1) without losing productivity in continuous culture, thereby improving the conversion yield of the nitrogen source. At 0.05 h-1 the spollG mutant of Bacillus subtilis DB104 (Δnpr Δapr) (Emr) spollG (Bimr):: pMK101 (Cmr) showed a subtilisin yield about ten times higher than that from wild-type DB104 (Δnpr Δapr)::pMK101 (Cmr). © 1995 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 35 (1995), S. 1636-1642 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Aspects of thermal, morphological, and rheological properties of biodegradable poly-D(-)(3-hydeoxybutyrate) (PHB) blended with poly(ethylene oxide) (PEO) have been studied. Thermal properties and morphology of the blends were examined by scanning electron microscopy and differential scanning calorimetry, respectively. A rotational theometer with parallel plate geometry was also adopted to investigate the rheological properties of these blends. In addition, dynamic ciscoelasticity was measured by a Rheovibron as functions of time and temperature. From these measurements, PHB and PEO were observed to be miscible in the melt state. In the case of the blend systen 80/20 PHB/PEO by weight, the vacant domains of the PHB were filled with PEO particles, and this morphological state enhanced the rheological properties. Furthermore, PHB and its blends were found to have high crystallinities, but to have unstable thermal behavior about Tm.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 864-879 
    ISSN: 0006-3592
    Keywords: Corynebacterium glutamicum mutants ; transconjugation ; intracellular flux analysis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The physiology and central carbon metabolism of Corynebacterium glutamicum was investigated through the study of specific disruption mutants. Mutants deficient in phosphoenolpyruvate carboxylase (PPC) and/or pyruvate kinase (PK) activity were constructed by disrupting the corresponding gene(s) via transconjugation. Standard batch fermentations were carried out with these mutants and results were evaluated in the context of intracellular flux analysis. The following were determined. (a) There is a significant reduction in the glycolytic pathway flux in the pyruvate kinase deficient mutants during growth on glucose, also evidenced by secretion of dihydroxyacetone and glyceraldehyde. The resulting metabolic overflow is accommodated by the pentose phosphate pathway (PPP) acting as mechanism for dissimilating, in the form of CO2, large amounts of accumulated intermediates. (b) The high activity through the PPP causes an overproduction of reducing power in the form of NADPH. The overproduction of biosynthetic reducing power, as well as the shortage of NADPH produced via the tricarboxylic acid cycle (as evidenced by a reduced citrate synthase flux), are compensated by an increased activity of the transhydrogenase (THD) enzyme catalyzing the reaction NADPH + NAD+↔NADP+ + NADH. The presence of active THD was also confirmed directly by enzymatic assays. (c) Specific glucose uptake rates declined during the course of fermentation and this decline was more pronounced in the case of a double mutant strain deficient in both PPC and PK. Specific ATP consumption rates similarly declined during the course of the batch. However, they were approximately the same for all strains, indicating that energetic requirements for biosynthesis and maintenance are independent of the specific genetic background of a strain. The above results underline the importance of intracellular flux analysis, not only for producing a static set of intracellular flux estimates, but also for uncovering changes occurring in the course of a batch fermentation or as result of specific genetic modifications. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55:864-879, 1997.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 29 (1995), S. 959-965 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Liver cell transplantation may provide a means to replace lost or deficient liver tissue, but devices capable of delivering hepatocytes to a desirable anatomic location and guiding the development of a new tissue from these cells and the host tissue are needed. We have investigated whether sponges fabricated from poly-L-lactic acid (PLA) infiltrated with polyvinyl alcohol (PVA) would meet these requirements. Highly porous sponges (porosity = 90-95%) were fabricated from PLA using a particulate leaching technique. To enable even and efficient cell seeding, the devices were infiltrated with the hydrophilic polymer polyvinyl alcohol (PVA). This reduced their contact angle with water from 79 to 23°, but did not inhibit the ability of hepatocytes to adhere to the polymer. Porous sponges of PLA infiltrated with PVA readily absorbed aqueous solutions into 98% of their pore volume, and could be evenly seeded with high densities (5 × 107 cells/mL) of hepatocytes. Hepatocyte-seeded devices were implanted into the mesentery of laboratory rats, and 6 ± 2 × 105 of the hepatocytes engrafted per sponge. Fibrovascular tissue invaded through the devices' pores, leading to a composite tissue consisting of hepatocytes, blood vessels and fibrous tissue, and the polymer sponge. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...