Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (22)
  • Exocrine secretion  (14)
  • Colon  (6)
  • Cl− conductance  (4)
Material
Years
Year
Keywords
  • 1
    ISSN: 1432-1440
    Keywords: Cystic fibrosis ; Cl- channel ; K+ channel ; Na+ channel ; Respiratory tract ; Colon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In most epithelia ion transport is tightly regulated. One major primary target of such regulation is the modulation of ion channels. The present brief review focuses on one specific example of ion channel regulation by the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR functions as a cAMP-regulated Cl- channel. Its defect leads to the variable clinical pictures of cystic fibrosis (CF), which today is understood as a primary defect of epithelial Cl- channels in a variety of tissues such as the respiratory tract, intestine, pancreas, skin, epididymis, fallopian tube, and others. Most recent findings suggest that CFTR also acts as a channel regulator. Three examples are discussed by which CFTR regulates other Cl- channels, K+ channels, and epithelial Na+ channels. From this perspective it is evident that CFTR may play a major role in the integration of cellular function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1440
    Keywords: Key words Cystic fibrosis ; Cl ; channel ; K+ channel ; Na+ channel ; Respiratory tract ; Colon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Abstract: In most epithelia ion transport is tightly regulated. One major primary target of such regulation is the modulation of ion channels. The present brief review focuses on one specific example of ion channel regulation by the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR functions as a cAMP-regulated Cl–channel. Its defect leads to the variable clinical pictures of cystic fibrosis (CF), which today is understood as a primary defect of epithelial Cl–channels in a variety of tissues such as the respiratory tract, intestine, pancreas, skin, epididymis, fallopian tube, and others. Most recent findings suggest that CFTR also acts as a channel regulator. Three examples are discussed by which CFTR regulates other Cl–channels, K+ channels, and epithelial Na+ channels. From this perspective it is evident that CFTR may play a major role in the integration of cellular function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 431 (1996), S. 419-426 
    ISSN: 1432-2013
    Keywords: Colon ; Triamterene ; Amiloride ; Na+ channel ; Cl− channel ; K+ channel ; Carbachol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Whole-cell patch-clamp studies were performed in isolated colonic crypts of rats pretreated with dexamethasone (6 mg/kg subcutaneously on 3 days consecutively prior to the experiment). The cells were divided into three categories according to their position along the crypt axis: surface cells (s.c.); mid-crypt cells (m.c.) and crypt base cells (b.c.). The zero-current membrane voltage (V m) was −56 ± 2 mV in s.c (n = 34); −76 ± 2 mV in M.C. (n = 47); and −87 ± 1 mV in b.c. (n = 87). The whole-cell conductance (G m) was similar (8–12 nS) in all three types of cells. A fractional K+ conductance accounting for 29–67% ofG m was present in all cell types. A Na+conductance was demonstrable in s.c. by the hyperpolarizing effect onV m of a low-Na+ (5 mmol/1) solution. In m.c. and b.c. the hyperpolarizing effect was much smaller, albeit significant. Amiloride had a concentration-dependent hyperpolarizing effect onV m in m.c. and even more so in s.c.. It reducedG m by approximately 12%. The dissociation constant (K D) was around 0.2 μmol/l. Triamterene had a comparable but not additive effect (K D = 30 μmol/l,n = 14). Forskolin (10 μmol/l, in order to enhance cytosolic adenosine 3′, 5′-cyclic monophosphate or CAMP) depolarizedV m in all three types of cells. The strongest effect was seen in b. c..G m was enhanced significantly in b.c. by 83% (forskolin) to 121% [8-(4-chlorophenylthio)cAMP]. The depolarization ofV m and increase inG m was caused to large extent by an increase in Cl− conductance as shown by the effect of a reduction in bath Cl− concentration from 145 to 32 mmol/1. This manocuvre hyperpolarizedV m under control conditions significantly by 6–9 mV in all three types of cells, whilst it depolarizedV m in the presence of forskolin in m.c. and in b.c.. These data indicate that s.c. of dexamethasone-treated rats possess mostly a K+ conductance and an amiloride- and Tramterene-inhibitable Na+ conductance. m.c. and b.c. possess little or no Na+ conductance; theirV m is largely determined by a K+ conductance. Forskolin (via cAMP) augments the Cl− conductance of m.c. and b.c. but has only a slight effect on s.c.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 434 (1997), S. 188-194 
    ISSN: 1432-2013
    Keywords: Key words Exocrine pancreas ; Cl ; channel ; Cl ; secretion ; Exocrine secretion ; Patch clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Pancreatic acini secrete Na+, Cl–and H2O in response to secretagogues such as acetylcholine. Cl–channels in the luminal membrane are a prerequisite for this secretion. The properties of the corresponding conductance have previously been examined using whole-cell recordings. The present study attempts to examine the properties of the single channels in cell-attached and cell-free excised patches from the luminal membrane. To this end the pipettes were filled with an N-methyl-D-glucamine (NMDG+) chloride/gluconate solution. The voltage-clamp range was chosen to be pipette positive (cell negative, –60 to –130 mV) in order to increase the driving force for outward Cl–currents. Under resting conditions cell attached luminal patches had very few single-channel currents (12 out of 45 experiments). Their incidence was sharply increased by carbachol (CCH, 1 μmol/l) in 41 out of 45 experiments. The single-channel conductance of these channels was 1.97 ± 0.05 pS. The properties of these channels in excised patches were examined further: their single-channel conductance was 2.2 ± 0.07 pS (n = 59) and their conductance selectivity was I– 〉 Br– 〉 Cl– 〉〉 gluconate. None of the typical Cl–channel blockers (DIDS, NPPB, glibenclamide 100 μmol/l) blocked these channels. It is concluded that the luminal membrane of the rat pancreatic acinus possesses Cl–channels with very low conductance which are activated by carbachol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2013
    Keywords: Key words cAMP ; Cl ; channels ; Cl ; secretion ; Exocrine secretion ; K+ channels ; Volume regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Previously it has been shown that the Na+2Cl–K+ cotransporter accepts NH4 + at its K+ binding site. This property can be used to estimate its transport rates by adding NH4 + to the bath and measuring the initial furosemide-dependent rates of change in BCECF fluorescence. We have utilized this technique to determine the regulation of the furosemide-inhibitable Na+2Cl–K+ cotransporter in in vitroperfused rectal gland tubules (RGT) of Squalus acanthias. Addition of NH4 + to the bath (20 mmol/l) led to an initial alkalinization, corresponding to NH3 uptake. This was followed by an acidification, corresponding to NH4 + uptake. The rate of this uptake was quantified by exponential curve fitting and is given in arbitrary units (Δfluorescence/time). This acidification could be completely inhibited by furosemide. In the absence of any secretagogue preincubation of RGT in a low Cl– solution (6 mmol/l, low Cl–) for 10 min enhanced the uptake rate significantly from 4.04±0.51 to 12.7±1.30 (n=5). The addition of urea (200 mmol/l) was without effect, but the addition of 300 mmol/l mannitol (+300 mannitol) enhanced the rate significantly from 7.24±1.33 to 14.7±4.6 (n=6). Stimulation of NaCl secretion by a solution maximizing the cytosolic cAMP concentration (Stim) led to a significant increase in NH4 + uptake rate from 5.00±1.33 to 13.3±1.54 (n=6). Similar results were obtained in the additional presence of Ba2+ (1 mmol/l): the uptake rate was increased significantly from 4.23±0.34 to 15.1±1.86 (n=16). In the presence of Stim low Cl– had no additional effect on the uptake rate: 15.1±3.1 versus 15.2±2.8 in high Cl– (n=6). The uptake rate in Stim containing additional +300 mannitol (22.3±4.0, n=5) was not significantly different from that obtained with Stim or +300 mannitol alone. By whatever mechanism the NH4 + uptake rate was increased furosemide (500 µmol/l) always reduced this rate to control values. Hence three manoeuvres enhanced furosemide-inhibitable uptake rates of the Na+2Cl–K+ cotransporter probably independently: (1) lowering of cytosolic Cl– concentration; (2) cell shrinkage; and (3) activation by cAMP.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 431 (1996), S. 427-434 
    ISSN: 1432-2013
    Keywords: Key words Colon ; Loop diuretics ; Na+ channel ; Cl ; channel ; Non-selective channel ; Exocrine secretion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Whole-cell patch-clamp studies in base cells of isolated colonic crypts of rats pretreated with dexa-methasone were performed to examine the effects of stimulation by forskolin (10 μmol/l). The experiments were designed in order to distinguish between two postulated effector mechanisms: the activation of a non-selective cation channel and the activation of Cl− channels. As shown in an accompanying report, forskolin depolarizes the membrane voltage (V m) by some 40–50 mV and enhances the whole-cell membrane conductance (G m) substantially in these cells. In this report all experiments were performed in the presence of forskolin. A reduction of the bath Na+ concentration from 145 to 2 mmol/l led to a hyperpolarization of V m by some 20–30 mV. This hyperpolarization occurred very slowly suggesting that the hyperpolarization produced by the low-Na+ solution was caused indirectly and not by a change in the equilibrium potential for Na+, E Na+. A complete kinetic analysis of the effect on voltage of bath Na+ revealed a saturation-type relation with a high apparent affinity for Na+ of around 5–10 mmol/l. A reduction in bath Cl− concentration from 145 to 32 mmol/l caused a depolarization of V m from −34 ± 3 to −20 ± 4 mV (n = 13) in the presence of a high bath Na+ concentration, but had the opposite effect at low (5 mmol/l) Na+ concentrations: V m was hyperpolarized from −46 ± 4 to −62 ± 6 mV (n = 13). If the effect of Na+ on V m was caused by a non-selective cation channel the opposite would have been expected. To test directly whether the Na+2Cl−K+ cotransporter was responsible for the effects of changes in bath Na+ on V m, the effects of increasing concentrations of several loop diuretics were examined. Furosemide, piretanide, torasemide and bumetanide (up to 0.1–0.5 mmol/l) all hyperpolarized V m, albeit only by less than 10 mV. Another subclass of loop diuretics containing a tetrazolate in position 1 [e.g. azosemide, no. 19A and no. 20A from Schlatter E, Greger R, Weidtke C (1983) Pflüger Arch 396: 210–217] were much more effective. Azosemide hyperpolarized V m from −46 ± 3 to −74 ± 2 mV (n = 18) and reduced G m from 11 ± 1 to 4 ± 1 nS (n = 14). These data indicate that forskolin stimulates Cl− secretion in these cells by a mechanism fully compatible with the current scheme for exocrine secretion involving the Na+2Cl−K+ cotransporter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2013
    Keywords: Key words Cell volume ; Cl ; secretion ; Exocrine secretion ; Na+2Cl ; K+ cotransporter ; Phalloidin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Effects of cAMP on Cl– secretion, intracellular Cl– activity and cell volume were studied in isolated perfused rectal gland tubules (RGT) of Squalus acanthias with electrophysiological and fluorescence methods. Recording of equivalent short-circuit current (I sc) showed that cAMP stimulates Na+Cl– secretion in a biphasic manner. The first and rapid phase corresponds to Cl– exit via the respective protein-kinase-A- (PKA-) phosphorylated Cl– conductance. The inhibitory effect of the loop diuretic furosemide (0.5 mmol/l, n=12) indicates that second phase reflects the delayed (1–2 min) activation of the Na+2Cl–K+ cotransporter. During the first phase cytosolic Cl– activity, as monitored by 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ) fluorescence, fell to 78% (n=23) of the control value. Concomitantly, a transient fall in cell volume was recorded by calcein fluorescence to 92% (n=5) of the control value. Preincubation of the RGT with phalloidin (0.1 mmol/l, n=6) or cytochalasin D (0.1 mmol/l, n=4) almost completely prevented the development of the second phase of I sc activation. When cytosolic Cl– activity was increased by exposing the RGT to a high K+ concentration (25 mmol/l), in the presence of mannitol to prevent volume increases, stimulation was unaffected and biphasic. In contrast, when cell volume was clamped to an increased value (115%, n=8) by removing extracellular NaCl, the second phase was abolished completely (n=11). These data suggest that the primary and key process for triggering the Na+2Cl–K+ cotransport is transient cell shrinkage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 429 (1995), S. 682-690 
    ISSN: 1432-2013
    Keywords: Cl− conductance ; K+ conductance ; Brefeldin A ; Cytochalasin D ; Epithelial cells ; Actin ; Microtubules
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Activation of Cl− and K+ channels is necessary to drive ion secretion in epithelia. There is substantial evidence from previous reports that vesicular transport and exocytosis are involved in the regulation of ion channels. In the present study we examined the role of cytoskeletal elements and components of intracellular vesicle transport on ion channel activation in bronchial epithelial cells. To this end, cells were incubated with a number of different compounds which interact with either microtubules or actin microfilaments, or which interfere with vesicle transport in the Golgi apparatus. The effectiveness of these agents was verified by fluorescence staining of cellular microtubules and actin. The function was examined in 36Cl− efflux studies as well as in whole-cell (WC) patch-clamp and cell-attached studies. The cells were studied under control conditions and after exposure to (in mmol/l) ATP (0.1), forskolin (0.01), histamine (0.01) and hypotonic bath solution (HBS, NaCl 72.5). In untreated control cells, ATP primarily activated a K+ conductance whilst histamine and forskolin induced mainly a Cl− conductance. HBS activated both K+ and Cl− conductances. Incubation of the cells with brefeldin A (up to 100 μmol/l) did not inhibit WC current activation and 36Cl− efflux. Nocodazole (up to 170 μmol/l) reduced the ATP-induced WC current, and mevastatin (up to 100 μmol/l) the cell-swelling-induced WC current. Neither had any effect on the WC current induced by forskolin and histamine. Also 36Cl− efflux induced by HBS, ATP, forskolin and histamine was unaltered by these compounds. Similarly, colchicine (10 μmol/l) and taxol (6 μmol/l) affected neither 36Cl− efflux nor WC current induced by ATP, forskolin, histamine or HBS. In contrast, depolymerisation of actin by cytochalasin D (10 μmol/l) significantly attenuated 36Cl− effluxes and WC current activation by the above-mentioned agonists. Incubation with a C2 clostridial toxin (5 nmol/l) showed similar effects on WC currents. Moreover, when cytochalasin D (10 μmol/l), C2 clostridial toxins (5 nmol/l), or phalloidin (10 μmol/l) were added to the pipette filling solution current activation was markedly reduced. However, in excised inside-out membrane patches, cytochalasin D (10 μmol/l), G-actin (10 μmol/l) and phalloidin (10 μmol/l) had no effect. These data suggest that actin participates in the activation of ion channels in 16HBE14o- epithelial cells and support the concept that exocytosis is a crucial step in the regulation of Cl− and K+ channels in these cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2013
    Keywords: Ca2+ channel ; Stimulation-secretion coupling ; Exocrine secretion ; Colon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Cl− secretion in HT29 cells is regulated by agonists such as carbachol, neurotensin and adenosine 5′-triphosphate (ATP). These agonists induce Ca2+ store release as well as Ca2+ influx from the extracellular space. The increase in cytosolic Ca2+ enhances the Cl− and K+ conductances of these cells. Removal of extracellular Ca2+ strongly attenuates the secretory response to the above-mentioned agonists. The present study utilises patch-clamp methods to characterise the Ca2+ influx pathway. Inhibitors which have been shown previously to inhibit non-selective cation channels, such as flufenamate (0.1 mmol·l−1, n=6) and Gd3+ (10 μmol·l−1, n=6) inhibited ATP (0.1 mmol·l−1) induced increases in whole-cell conductance (G m). When Cl− and K+ currents were inhibited by the presence of Cs2SO4 in the patch pipette and gluconate in the bath, ATP (0.1 mmol·l−1) still induced a significant increase in G m from 1.2±0.3 nS to 4.7±1 nS (n=24). This suggests that ATP induces a cation influx with a conductance of approximately 3–4 nS. This cation influx was inhibited by flufenamate (0.1 mmol·l−1, n=6) and Gd3+ (10 μmol·l−1, n=9). When Ba2+ (5 mmol·l−1) and 4,4′-diisothiocyanatostilbene-2-2′-disulphonic acid (DIDS, 0.1 mmol·l−1) were added to the KCl/K-gluconate pipette solution to inhibit K+ and Cl− currents and the cells were clamped to depolarised voltages, ATP (0.1 mmol·l−1) reduced the membrane current (I m) significantly from 86±14 pA to 54±11 pA (n=13), unmasking a cation inward current. In another series, the cation inward current was activated by dialysing the cell with a KCl/K-gluconate solution containing 5–10 mmol·l−1 1,2-bis-(2-aminoethoxy)ethane-N,N,N′,N′-tetraacetic acid (EGTA) or 1,2-bis-(2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA). The zero-current membrane voltage (V m) and I m (at a clamp voltage of +10 mV) were monitored as a function of time. A new steady-state was reached 30–120 s after membrane rupture. V m depolarised significantly from −33±2 mV to −12±1 mV, and I m fell significantly from 17±2 pA to 8.9±1.0 pA (n=71). This negative current, representing a cation inward current, was activated when Ca2+ stores were emptied and was reduced significantly (ΔI m) when Ca2+ and/or Na+ were removed from the bathing solution: removal of Ca2+ in the absence of Na+ caused a ΔI m of 5.0±1.2 pA (n=12); removal of Na+ in the absence of Ca2+ caused a ΔI m of 12.8±3.5 pA (n=4). The cation inward current was also reduced significantly by La3+, Gd3+, and flufenamate. We conclude that store depletion induces a Ca2+/Na+ influx current in these cells. With 145 mmol·l−1 Na+ and 1 mmol·l−1 Ca2+, both ions contribute to this cation inward current. This current is an important component in the agonist-regulated secretory response.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-2013
    Keywords: N-Acetyl-l-cysteine-S-Carboxymethyl-l-cysteine ; Respiratory epithelial cells ; Cystic fibrosis ; CFTR ; Cl− conductance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract N-Acetyl-l-cysteine (NAC) is a widely used mucolytic drug in patients with a variety of respiratory disorders including cystic fibrosis (CF). The beneficial effects of NAC are empirical and the exact mechanism of action in the airways remains obscure. In the present study we examined the effects on whole-cell (we) conductance (G m) and voltage (V m) of NAC and the congeners S-carboxymethyl-l-cysteine (CMC) andS-carbamyl-L-cysteine (CAC) andL-cysteine in normal and CF airway epithelial cells.L-Cysteine (1 mmol/1) had no detectable effect. The increase inG m (ΔGm) by the other compounds was concentration dependent and was (all substances at 1 mmol/1) 3.8 ± 1.4 nS (NAC; n = 11), 4.2 ± 1.0 nS (CMC;n = 16) and 3.8 ± 1.6 nS (CAC;n = 18), respectively. The changes in Gm were paralleled by an increased depolarization (ΔVm) when extracellular Cl− concentration was reduced to 34 mmol/1: under control conditions = -4.1 ± 2.1 versus 10.2 ± 2.1 mV in the presence of NAC, CMC, CAC (n = 36). In the presence of NAC, CMC and CAC, the reduction in Cl− concentration was paralleled by a reduction ofG m by 2.1 ± 0.4 nS (n = 35), indicating that all substances acted by increasing the Cl− conductance. Analysis of intracellular pH did not reveal any changes by any of the compounds (1 mmol/1). A Cl− conductance was also activated in HT29 colonic carcinoma and CF tracheal epithelial (CFDE) cells but not in CFPA1 cells, which do not express detectable levels of ΔF508-CFTR, suggesting that the presence of CFTR may be a prerequisite for the induction of Cl− currents. Next we examined the ion currents in Xenopus oocytes microinjected with CFTR-cRNA. Water-injected oocytes did not respond to activation by forskolin and 3-isobutyl-l-methylxanthine (IBMX) (ΔGm = 0.08 ±0.04 μS;n = 10) and no current was activated when these oocytes were exposed to NAC or CMC. In contrast, in CFTR-cRNA-injected cocytesG m was enhanced when intracellular adenosine 3′,5′-cyclic monophosphate (cAMP) was increased by forskolin and IBMX (G m = 4.5 ± 1.3 μS;n = 8).G m was significantly increased by 0.74 ± 0.2 μS (n = 11) and 0.46 ± 0.1 μS (n = 10) when oocytes were exposed to NAC and CMC, respectively (both I mmol/1). In conclusion, NAC and its congeners activate Cl− conductances in normal and CF airway epithelial cells and hence induce electrolyte secretion which may be beneficial in CF patients. CFTR appears to be required for this response in an as yet unknown fashion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...