Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2072
    Keywords: Key words Parkinson’s disease ; Primates ; Chorea ; Dystonia ; MPTP ; L-Dopa ; Dyskinesia ; Dopamine agonist
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Common marmosets show parkinsonian motor deficits following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration and develop dyskinesias during chronic L-dopa exposure. The D1 agonists A-77636 [(1R, 3S) 3-(1’-adamantyl)-1-aminomethyl-3, 4-dihydro-5, 6-dihydroxy-1H-2-benzopyran HCl] and A-86929 [(−)-trans 9, 10-hydroxy-2-propyl-4, 5, 5a, 6, 7, 11b-hexahydro-3-thia-5-azacyclopent-1-ena[c]phenanthrene hydrochloride] possess potent antiparkinsonian activity in the MPTP-treated marmoset and we now assess their influence on L-dopa-induced dyskinesias. MPTP-treated marmosets with stable motor deficits were treated with L-dopa plus carbidopa for 28 days to induce dyskinesias. Subsequently, they received A-86929 for 10 days, initially at 0.5 μmol/kg and then at 1.0 μmol/kg for a further 5 days. Several months later, L-dopa 12.5 mg/kg plus carbidopa 12.5 mg/kg was given orally twice daily for 7 days, followed by A-77636 1 μmol/kg for 10 days, and then both A-77636 and L-dopa plus carbidopa were given concurrently for 3 further days. In these L-dopa-primed animals, A-86929 effectively reversed akinesia and produced dose-dependent dyskinesias which were significantly less intense than those produced by L-dopa administration. A degree of behavioral tolerance was encountered, but antiparkinsonian activity was preserved and elicited behaviour was free of hyperkinesis and stereotypy and more naturalistic than that seen with L-dopa. After a week of twice-daily L-dopa dosing, administration of the long-acting D1 agonist A-77636 initially dramatically enhanced locomotion and reproduced dyskinesia with prominent dystonia, but after repeated administration of A-77636, dyskinesia and in particular chorea, gradually disappeared. Tolerance to locomotor stimulation greater than with A-86929 occurred, although activity remained significantly above baseline levels. There was a marked reduction in L-dopa-induced climbing, stereotypy and hyperkinesis and behaviour more closely resembled that of normal unlesioned marmosets. Upon reintroduction of L-dopa concurrently with continued A-77636 administration, dystonic, but virtually no choreic dyskinesias appeared and behaviour was once again free of stereotypy and hyperkinesis, contrasting dramatically with the presence of these behaviours along with abundant chorea when L-dopa is given alone. These results show a lesser liability of A-86929 and A-77636 to reproduce dyskinesia in L-dopa-primed MPTP-lesioned subjects while maintaining effective antiparkinsonian activity and producing a more naturalistic motor response. The differential effects of A-77636 on chorea and dystonia, with suppression of chorea and stereotypy on co-administration with L-dopa, may reflect an altered balance of activity in the direct and indirect striatofugal pathways. These results suggest a possible role for D1 agonists in the treatment of Parkinson’s disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1463
    Keywords: [14C]-2DG uptake ; MPTP ; marmoset ; basal ganglia ; behavioural recovery
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The “short-term” (0.7 ± 0.1 months post-MPTP) and “long-term” effects (36.7 ± 4.4 months) of MPTP treatment on motor behaviour and [14C]-2DG uptake were investigated in the common marmoset. The subcutaneous administration of MPTP greatly reduced locomotor activity (−94% with respect to controls) and induced motor disability in the “short-term” MPTP-treated marmoset group. In the “long-term” MPTP group, MPTP treatment did not significantly affect locomotor activity (−27% with respect to controls) and there was partial recovery of motor disability. In the “short-term” MPTP group, there were increases in [14C]-2DG uptake in the GP1 (+31 to +37%), SNc (+34 to +42%), VTA (+35%), LC (+23%), PPN (+19%) and in the VA (+19%), VL (+20%) and AM (+17%) thalamic nuclei. [14C]-2DG uptake was decreased in the STN (−15%). In the “long-term” MPTP group, [14C]-2DG uptake was increased in the GP1 (+18%), SNc (+27%), VTA (+25%), PPN (+19%), ventral caudate nucleus (+18 to +23%), NAc (+22%), F.Ctx (+18%) and in the VA (+34%), VL (+28%), AV (+33%) and AM (+24%) thalamic nuclei. [14C]-2DG uptake was unchanged in the STN. The increase in metabolic activity of the surviving DA neurones and/or the reactive gliosis may account for the initial increase in [14C]-2DG uptake in the SNc and VTA. On the other hand, in the “long-term” MPTP-treated animals the increase in [14C]-2DG uptake in the SNc (though less than in the “short-term” MPTP group), ventral caudate and NAc may reflect the regenerative changes in the dopaminergic system in these areas. Despite the behavioural recovery, [14C]-2DG uptake remained elevated in the target areas for medial paludal output (the thalamic nuclei and PPN). However, the attenuation of the changes in [14C]-2DG uptake in the GP1 and STN of “longterm” MPTP-treated marmosets suggest that the striato-GPl and GP1-STN outputs closely reflect motor function in this primate model of Parkinson's disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1435-1463
    Keywords: Preproenkephalin mRNA ; preprotachykinin mRNA ; basal ganglia ; dopamine agonists
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Striatal mRNA expression for preproenkephalin (PPE) and preprotachykinin (PPT) was studied in unilateral 6-OHDA lesioned rats treated subchronically with a range of selective and non-selective D-1 or D-2 dopamine (DA) agonists. Apomorphine (5mg/kg sc), pergolide (0.5mg/kg sc), SKF 38393 (5mg/kg sc), SKF 80723 (1.5mg/kg sc), and quinpirole (5mg/ kg sc), or 0.9% saline (150μl sc) were all given twice daily (except pergolide: once daily) for 7 days. The abundance of PPE mRNA was not altered by any of these DA agonists in the intact striatum contralateral to the 6-OHDA lesion. Only apomorphine and quinpirole increased the abundance of PPT mRNA in the intact striatum. In saline treated 6-OHDA lesioned animals PPE mRNA was elevated (+160%, p 〈 0.005) and PPT mRNA decreased (−36%, p 〈 0.005) in the denervated striatum. The up-regulation of striatal PPE mRNA in the lesioned striatum was reversed only by pergolide. The downregulation of striatal PPT mRNA in the lesioned striatum was reversed only by apomorphine. The differential sensitivity of the striatal PPE message to the long-acting DA agonist pergolide, and of the striatal PPT message to the mixed D-1/D-2 DA agonist apomorphine suggests that the striatopallidal enkephalinergic pathways are mainly regulated by prolonged DA receptor stimulation, whereas the striatonigral substance P pathways are mainly regulated by mixed D-1/D-2 DA receptor stimulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...