Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (10)
  • ddc:000  (10)
Source
Years
Year
Keywords
  • ddc:000  (10)
Language
  • 1
    Publication Date: 2020-03-09
    Description: We present a new technique for generating surface meshes from a uniform set of discrete samples. Our method extends the well-known marching cubes algorithm used for computing polygonal isosurfaces. While in marching cubes each vertex of a cubic grid cell is binary classified as lying above or below an isosurface, in our approach an arbitrary number of vertex classes can be specified. Consequently the resulting surfaces consist of patches separating volumes of two different classes each. Similar to the marching cubes algorithm all grid cells are traversed and classified according to the number of different vertex classes involved and their arrangement. The solution for each configuration is computed based on a model that assigns probabilities to the vertices and interpolates them. We introduce an automatic method to find a triangulation which approximates the boundary surfaces - implicitly given by our model - in a topological correct way. Look-up tables guarantee a high performance of the algorithm. In medical applications our method can be used to extract surfaces from a 3D segmentation of tomographic images into multiple tissue types. The resulting surfaces are well suited for subsequent volumetric mesh generation, which is needed for simulation as well as visualization tasks. The proposed algorithm provides a robust and unique solution, avoiding ambiguities occuring in other methods. The method is of great significance in modeling and animation too, where it can be used for polygonalization of non-manifold implicit surfaces.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-26
    Description: The paper surveys recent progress in a joint mathematical-medical project on cancer therapy planning. Within so-called regional hyperthermia the computational task is to tune a set of coupled radiofrequency antennas such that a carefully measured tumor is locally heated, but any outside hot spots are avoided. A mathematical model of the whole clinical system -- air, applicator with antennas, water bolus, individual patient body -- involves Maxwell's equations in inhomogeneous media and a parabolic bioheat transfer equation, which represents a simplified model of heat transfer in the human body (ignoring strong blood vessel heat transport). Both PDEs need to be computed fast and to medical reliability (!) on a workstation within a clinical environment. This requirement triggered a series of new algorithmic developments to be reported here, among which is an adaptive multilevel FEM for Maxwell's equations, which dominates the numerical simulation time. In total, however, the main bulk of computation time (see Table 3 in Section 4 below) still goes into segmentation -- a necessary preprocessing step in the construction a 3D virtual patient from the input of a stack of 2D computed tomograms (left out here).
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-01-29
    Description: In the clinical cancer therapy of regional hyperthermia nonlinear perfusion effects inside and outside the tumor seem to play a not negligible role. A stationary model of such effects leads to a nonlinear Helmholtz term within an elliptic boundary value problem. The present paper reports about the application of a recently designed adaptive multilevel FEM to this problem. For several 3D virtual patients, nonlinear versus linear model is studied. Moreover, the numerical efficiency of the new algorithm is compared with a former application of an adaptive FEM to the corresponding instationary model PDE.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-03-09
    Description: After a short summary on therapy planning and the underlying technologies we discuss quantitative medicine by giving a short overview on medical image data, summarizing some applications of computer based treatment planning, and outlining requirements on medical planning systems. Then we continue with a description of our medical planning system {\sf HyperPlan}. It supports typical working steps in therapy planning, like data aquisition, segmentation, grid generation, numerical simulation and optimization, accompanying these with powerful visualization and interaction techniques.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-03-09
    Description: \noindent The speaker and his co-workers in Scientific Computing and Visualization have established a close cooperation with medical doctors at the Rudolf--Virchow--Klinikum of the Humboldt University in Berlin on the topic of regional hyperthermia. In order to permit a patient--specific treatment planning, a special software system ({\sf\small HyperPlan}) has been developed. \noindent A mathematical model of the clinical system ({\it radio frequency applicator with 8 antennas, water bolus, individual patient body}) involves Maxwell's equations in inhomogeneous media and a so--called bio--heat transfer PDE describing the temperature distribution in the human body. The electromagnetic field and the thermal phenomena need to be computed at a speed suitable for the clinical environment. An individual geometric patient model is generated as a quite complicated tetrahedral ``coarse'' grid (several thousands of nodes). Both Maxwell's equations and the bio--heat transfer equation are solved on that 3D--grid by means of {\em adaptive} multilevel finite element methods, which automatically refine the grid where necessary in view of the required accuracy. Finally optimal antenna parameters for the applicator are determined . \noindent All steps of the planning process are supported by powerful visualization methods. Medical images, contours, grids, simulated electromagnetic fields and temperature distributions can be displayed in combination. A number of new algorithms and techniques had to be developed and implemented. Special emphasis has been put on advanced 3D interaction methods and user interface issues.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-05-10
    Description: We describe an optimization process specially designed for regional hyperthermia of deep seated tumors in order to achieve desired steady--state temperature distributions. A nonlinear three--dimensional heat transfer model based on temperature--dependent blood perfusion is applied to predict the temperature. Using linearly implicit methods in time and adaptive multilevel finite elements in space, we are able to integrate efficiently the instationary nonlinear heat equation with high accuracy. Optimal heating is obtained by minimizing an integral object function which measures the distance between desired and model predicted temperatures. A sequence of minima is calculated from successively improved constant--rate perfusion models employing a damped Newton method in an inner iteration. We compare temperature distributions for two individual patients calculated on coarse and fine spatial grids and present numerical results of optimizations for a Sigma 60 Applicator of the BSD 2000 Hyperthermia System.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-05-10
    Description: We present a self-adaptive finite element method to solve nonlinear evolution problems in 3D. An implicit time integrator of Rosenbrock type is coupled with a multilevel approach in space. The proposed method is applied to hyperthermia treatments to demonstrate its potential for the solving of complicated problems.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-05-10
    Description: We describe an optimization process specially designed for regional hyperthermia of deap seated tumors in order to achieve desired steady--state temperature distributions. A nonlinear three--dimensional heat--transfer model based on temperature--dependent blood perfusion is applied to predict the temperature. Optimal heating is obtained by minimizing an integral object function which measures the distance between desired and model predicted temperatures. Sequential minima are calculated from successively improved constant--rate perfusion models employing a damped Newton method in an inner iteration. Numerical results for a Sigma 60 applicator are presented. This work has been supported by Deutsche Forschungsgemeinschaft (DFG) within the Sonderforschungsbereich 273 \glqq Hyperthermie: Methodik und Klinik \grqq .
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-03-23
    Description: Die Arbeitstagung \glqq Scientific Computing in der Medizin\grqq , kurz SCMED \grq 97, findet vom 22. - 23. September 1997 im neu errichteten Gebäude des Konrad-Zuse-Zentrums auf dem Dahlemer naturwissenschaftlichen Campus der Freien Universtät Berlin statt.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-01-24
    Description: Polygonale Schädelmodelle bilden ein wichtiges Hilfsmittel für computergestützte Planungen im Bereich der plastischen Chirurgie. Wir beschreiben, wie derartige Modelle automatisch aus hochaufgelösten CT-Datensätzen erzeugt werden können. Durch einen lokal steuerbaren Simplifizierungsalgorithmus werden die Modelle so weit vereinfacht, daß auch auf kleineren Graphikcomputern interaktives Arbeiten möglich wird. Die Verwendung eines speziellen Transparenzmodells ermöglicht den ungehinderten Blick auf die bei der Planung relevanten Knochenstrukturen und läßt den Benutzer zugleich die Kopfumrisse des Patienten erkennen.
    Keywords: ddc:000
    Language: German
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...