Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Journal of inherited metabolic disease 19 (1996), S. 595-602 
    ISSN: 1573-2665
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Mutation at the phenylalanine hydroxylase (PAH) locus is a cause of hyperphenylalaninaemia. Genotype-phenotype correlation relative to the predicted PAH activity may differ at the metabolite level and at the IQ level in untreated phenylketonuria. Discordant metabolic phenotypes have been noted in siblings; influences on transport and metabolism of phenylalanine determining homeostasis may account for differing metabolic phenotypes. We report two siblings of different sex and identical genotype at the PAH locus who demonstrate a difference in phenylalanine disposal. A stable isotope infusion of [2H5]phenylalanine was used to measure protein turnover, phenylalanine hydroxylation and excretion of phenylalanine transamination metabolites. The siblings were observed to have identical hydroxylation rates under the experimental conditions of the study while manifesting differences in renal excretion rates of phenylalanine transamination metabolites and protein accretion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 32 (1997), S. 4909-4916 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Barrier-type film growth on the high strength aluminium alloy FVS0812 has been studied by a combination of transmission electron microscopy and Rutherford backscattering spectroscopy. The film is composed mainly of amorphous anodic alumina, but is contaminated with iron species incorporated into the film from the alloy. The film may also be contaminated with silicon and vanadium species at levels below the detection limit of the present experiments. The contaminant species are primarily incorporated locally into the film during oxidation of Al13(Fe, V)3Si dispersoids and the resulting film material is of reduced resistivity compared with anodic alumina of high purity. As a consequence of the presence of regions of film material of differing resistivities, the film is of irregular thickness. The average thickness corresponds to a nm/V ratio of about 1.3. Iron species incorporated into the film migrate outwards at roughly 2.1 times the rate of Al3+ ions. The iron species are not ejected in significant amounts to the electrolyte on reaching the film/electrolyte interface and hence, a thin layer of film material highly enriched in iron species develops at the film surface. The layer may also be enriched in vanadium species, if these are incorporated into the film and migrate more rapidly than Al3+ ions. Enrichment of iron, and possibly other alloying element atoms, is found in a thin layer of alloy immediately beneath the anodic film, paralleling enrichments of alloying element atoms found following anodic oxidation of other aluminium alloys. The enrichments at both the alloy/film and film/electrolyte interfaces do not appear to be continuous across the macroscopic surface of the specimens, probably due to the non-uniformity of film growth on the two-phase substrate. The maximum voltage for the selected conditions of anodizing was limited to 68 V as a result of oxygen generation at flaws which are present extensively in the anodic film.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 33 (1998), S. 4159-4165 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The formation of porous anodic films on FVS0812 aluminium alloy has been examined by transmission electron microscopy in order to elucidate the processes of film growth. A complex morphology of film material is revealed containing relatively tortuous, branched and terminated porosity and relatively large cavities. The morphology is associated with the differing anodic oxidation behaviour of the aluminium matrix and silicide dispersion regions of the alloy and the differing chemical stabilities of the resultant film regions. The anodic oxidation of the silicide proceeds more slowly than that of the aluminium matrix, with the production of film material of much finer morphology. The reduced rate of oxidation of the silicide is attributed to the effects of alloying element species in the anodic film material and pore solution. The rate of oxidation of the silicide is sufficient for most of the particles to be oxidized completely during anodizing. However, the resultant film material subsequently dissolves in the pore solution leaving relatively large cavities in the film. The differing oxidation rates of the alloy components, coupled with locally differing film properties, leads to a relatively rough alloy/film interface.© 1998 Kluwer Academic Publishers
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Surface and Interface Analysis 23 (1995), S. 892-898 
    ISSN: 0142-2421
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Physics
    Notes: The mechanism of oxidation of copper at the alloy/film interface, and the subsequent migration of copper ions in barrier-type films, has been examined for anodizing of an Al - 1.5 wt.% Cu alloy with a prior chemical polishing treatment. Both chemical polishing and anodizing result in formation of a thin layer of alloy at the alloy/film interface, of ∼2 nm thick, that is highly enriched in copper. The layer is present immediately beneath the different types of film formed by chemical polishing and subsequent anodizing, and contains in both cases ∼6 × 1019 Cu atoms m-2. The amount of copper contained within the enriched layer of alloy is not significantly dependent upon the anodizing voltage. During anodic film growth, both aluminium and copper ions are incorporated into the film at the alloy/film interface, on average in their alloy proportions. However, the film is depleted in copper relative to the alloy because copper ions in the film migrate faster than Al3+ ions and, on reaching the film/electrolyte interface, are ejected directly to solution. The mechanism of oxidation of copper is proposed to depend upon the formation, through prior oxidation of aluminium, of copper-rich clusters in the enriched layer of alloy at the alloy/film interface. Individual clusters are oxidized only on achieving a critical size. Consequently, copper is incorporated into the film discontinuously both in time and in position along the alloy/film interface. The films contain a high population density of flaws, which affects the film composition, the uniformity of ionic current, the faradaic efficiency of film growth, and the detailed distributions of copper ions within the films. However, the general features of film growth are compatible with the usual growth mechanism of anodic alumina, with transport numbers of Al3+ and O2-/OH- ions of ∼0.4 and ∼0.6, respectively.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...