Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (5)
  • 1965-1969
  • Chemical Engineering  (3)
  • Muscle  (2)
  • 1
    ISSN: 1432-2013
    Keywords: Muscle ; Morphometry ; Blood flow ; Microcirculation ; Oxidative capacity ; Oxygen transport ; V2,max
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The mean minimal capillary transit time was estimated in muscles of various animals using a combination of physiological and morphometric methods. Radioactive microspheres were injected intravascularly in various animals running on a treadmill at maximum oxygen consumption rate (VO2,max) to label blood flow to individual muscles. The muscles were then removed and preserved by standard methods for electron microscopy. The volume density of mitochondria was measured to assess muscle oxidative capacity. Capillary densities in muscle cross-sections, capillary diameters and tortuosities were incorporated into an estimate of capillary volume per unit muscle mass. Mean capillary transit time (t c) in the exercising muscles was estimated by dividing mass-specific capillary volume by mass-specific blood flow. Estimates of t c ranged from values near 1 s in horse heart and thigh muscles to 0.2 s in duck gastrocnemius. The relationship between muscle blood flow and t c was hyperbolic. The experimental data indicate a limiting value of 0.2 s for transit times at very high blood flows. There was no correlation between t c and body-mass-specific VO2,max.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European journal of applied physiology 62 (1991), S. 301-304 
    ISSN: 1439-6327
    Keywords: Muscle ; Muscle fibres ; Histocytochemistry ; Hyperplasia ; Handedness
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Cross-sections (thickness 10 μm) of whole autopsied left and right anterior tibialis muscles of seven young previously healthy right-handed men (mean age 23 years, range 18–32 years) were prepared for light-microscope enzyme histochemistry. Muscle cross-sectional area and total number of fibres, mean fibre size (indirectly determined) and proportion of the different fibre types (type 1 and type 2 on basis of myofibrillar adenosine triphosphatase characteristics), in each muscle cross-section were determined. The analysis showed that the cross-sectional area of the left muscle was significantly larger (P〈0.05), and the total number of fibres was significantly higher (P〈0.05), than for the corresponding right muscle. There was no significant difference for the mean fibre size or the proportion of the two fibre types. The results imply that long-term asymmetrical low-level daily demands on muscles of the left and the right lower leg in right-handed individuals provide enough stimuli to induce an enlargement of the muscles on the left side, and that this enlargement is due to an increase in the number of muscle fibres (fibre hyperplasia). Calculations based on the data also explain why the underlying process of hyperplasia is difficult, or even impossible, to detect in standard muscle biopsies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 32 (1992), S. 1163-1173 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: This paper exmines the influence of process variables on final thickness distributions for vacuum-formed thermoplastic parts. The process variables investigated include evacuation rate, sheet surface temperature, mold temperature, and material slip over the mold surface. The experimental data presented include, in addition to thicknesses, sheet surface temperature obtained via infrared thermography. A finite element program to model the vacuum-forming process is discussed, and the wall thickness distribution predicted by this program for a vacuum-formed part is compared with the results of the experiments.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Eight commercial semiconductor grade epoxy compounds that are used to encapsulate 1C (integrated circuit) devices have been evaluated for their ability to minimize the development of thermal stresses which can cause failure during device temperature cycling. Thermal expansion, dynamic modulus and adhesion studies are used to describe the mechanical interaction between the plastic package and the silicon device it surrounds. A “figure of merit” is defined for the development of stress on the 1C device as it is cooled after the packaging process. The stress is shown to be proportional to the product of three terms: (αp-αs) Ep (Tanch-T) where αp and αs are the expansion coefficients for the plastic and silicon, respectively, Ep is the modulus of the epoxy and Tanch is the temperature at which the epoxy becomes anchored to the silicon device during transfer molding. In addition, the importance of good adhesion between the epoxy encapsulant and the silicon device to prevent package cracking has been demonstrated by finite element analysis and a novel adhesion test.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 30 (1990), S. 1314-1322 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The development of a finite element program specifically designed to simulate thermoforming in complex three-dimensional geometries is described. The large strain finite element model developed for simulating thermoforming processes is based on a total Lagrangian formulation which results in a nonlinear system of equations that must be solved iteratively. The nonlinear material behavior and contact between the polymer and mold surf aces ieads to additional complications in the numerical solution of the thermoforming simulation problem. In an effort to verify the accuracy of the finite element model developed in this study, analyses are compared with measurements obtained from three-dimensional three-formed parts.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...