Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
  • Cell proliferation  (1)
  • Cytoskeleton  (1)
  • Colchicum autumnale
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of cancer research and clinical oncology 120 (1994), S. 208-212 
    ISSN: 1432-1335
    Keywords: Okadaic aicd ; Digestive tract ; Gastrointestinal mucosae ; Cell proliferation ; Protein phosphatases 1, 2A
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Effects of compounds of the okadaic acid type (okadaic acid, dinophysistoxin-1, calyculin A and tautomycin) on proliferation by digestive-tract epithelial cells were investigated in mice and rats. In mice, a single oral administration of these agents caused significant enhancement of BrdU labeling indices in a dose/response manner. Exceptions showing no response were limited to the pyloric mucosa for okadaic acid, the pyloric and fundic mucosa for calyculin A and the pyloric mucosa for tautomycin. Sequential analysis of labeling indices after a single oral administration of dinophysistoxin-1 revealed two peaks of cell proliferation at 18 h and 36 h in the esophagus, ileum and colon. The labeling indices of the forestomach, fundus, pylorus and jejunum, on the other hand, continuously increased from 6 h after the administration. Elevated proliferation was also observed in the skin after 30 h or after, but no effects on the liver or kidney were evident. A single oral administration of the okadaic acid type of compounds also dose-dependently enhanced cell proliferation of the rat digestive tract. These results strongly suggest that the okadaic acid class of compounds may exert promoting potential for the gastrointestinal mucosa when administered orally.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Boergesenia forbesii ; Cellulose synthesizing complex ; Cytoskeleton ; Helicoidal wall ; Membrane fluidity ; Microfibril orientation ; Plasma membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Microfibrillar textures and orientation of cellulose microfibrils (MFs) in the coenocytic green alga,Boergesenia forbesii, were investigated by fluorescence and electron microscopy. Newly formed aplanosporic spherical cells inBoergesenia start to form cellulose MFs on their surfaces after 2 h of culture at 25°C. Microfibrillar orientation becomes random, fountain-shaped, and helicoidal after 2, 4, and 5 h, respectively. The fountain orientation of MFs is usually apparent prior to helicoidal MF orientation and thus may be considered to initiate helicoid formation. Microfibrils continue to take on the helicoidal arrangement during the growth ofBoergesenia thallus. The helicoidal orientation of MFs occurs through gradual counterclockwise change in MF deposition by terminal complexes (TCs) viewed from inside the cell. On the dorsal side of curving TC impressions in helicoidal texture formation on a freeze-fractured plasma membrane, the aggregation of intramembranous particles (IMPs) occurs. Membrane flow may thus possibly affect the regulation of helicoidal orientation inBoergesenia. Following treatment with 3 μM amiprophos-methyl (APM) or 1 mM colchicine, cortical microtubules (MTs) completely disappear within 24 h but helicoidal textures formation is not affected. With 15 μM cytochalasin B or 30 μM phalloidin, however, the helicoidal orientation of MFs becomes random. Treatment with CaCl2 (10 mM) causes the helicoidal MF orientation of cells to become random, but co-treatment with N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7) (100 mM) prevents this effect, though W-7 has no effect on the helicoidal MF formation. It thus follows that MF orientation inBoergesenia possibly involves actin whose action may be regulated by calmodulin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...