Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 9 (1990), S. 330-334 
    ISSN: 1432-0789
    Keywords: Bradyrhizobium japonicum ; Inoculation ; Nodule occupancy ; Competition ; Rhizobiophage ; Acetylene reduction assay (ARA)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Previous laboratory and greenhouse studies have shown that phages significantly reduce soil populations of homologous rhizobia. Reductions in nodulation and N2 fixation have also been observed. The purpose of the current study was to examine the effect of a phage specific ofBradyrhizobium japonicum USDA 117 on nodulation, nodule occupancy, N2 fixation and soybean growth and yield under field conditions. The phage was inoculated in combination withB. japonicum USDA 117 and/orB. japonicum USDA 110 (resistant strain) into a rhizobia-free sandy loam soil and planted toGlycine max (L.) Merr. “Williams”. When the phage was applied to soil inoculated withB. japonicum USDA 117 alone, significant reductions in nodule weight and number, shoot weight, foliar N, nitrogenase activity, and seed index were observed. When, however, the soil also contained the non-homologous strain,B. japonicum USDA 110, no significant effects on any of these parameters were found. Nodule occupancy by competing strains ofB. japonicum USDA 110 and USDA 117 was also affected by the phage. In soil which did not contain the phage, 46% and 44% of the identified nodules were occupied by USDA 110 and 117, respectively. When the phage was present in the soil, nodule occupancy byB. japonicum USDA 117 was reduced to 23%, while occupancy byB. japonicum USDA 110 was increased to 71%. These results suggest that nodulation by selected strains of rhizobia can be restricted and nodulation by more effective, inoculated strains can be increased through the introduction of a homologous phage to soils.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Rhizobia ; Reclamation ; VAM ; N2 fixation ; Calcareous soil ; Vicia faba ; Infection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Desert areas of Egypt are rapidly being planted with faba beans (Vicia faba) to increase the production of this economically important legume. Since indigenous populations of rhizobia or vesicular-arbuscular (VA) mycorrhizae are absent or low in this soil, the objective of the current study was to determine whether inoculation with several strains of Rhizobium leguminosarum bv. vicae and VA mycorrhizae could successfully increase the growth of faba beans. Growth was compared to that in a fertile silt loam soil from the Nile River Valley. The effect of rock phosphate and superphosphate on the faba bean was also examined. The growth of faba beans was increased by dual inoculation with VA mycorrhizae and rhizobia, to a much greater extent than can be attributed to either inoculum on a singular basis. Rhizobium leguminosarum bv. Viceae USDA strain 102 F84 was the most effective of the rhizobial strains examined. Growth, plant nutrient content, nodulation, and root colonization were invariably greater in the silt loam soil than the calcareous soil. The addition of rock or superphosphate to soil enhanced these parameters in the calcareous soil, but less than that observed in the silt loam soil. These results demonstrate that the growth of faba beans can be increased in calcareous desert soils by inoculation with rhizobia and VA mycorrhizae. However, the growth remained inferior to that observed in the fertile Nile River Valley soil.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 57-58 (1991), S. 597-604 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Effects of heavy metals on rhizobia and the symbiotic association with leguminous hosts are currently unclear. To investigate this problem, we examined Rhizobium meliloti (microsymbiont) and alfalfa (Medicago sativa) (macrosymbiont) collected from soils contaminated with varying concentrations of heavy metals (varying distances from a Zn smelter operating 90 yr.). Soil populations of R. meliloti were not correlated with metal concentrations in soil. The lowest rhizobial population was found in the soil with the highest extractable metal concentrations, but the highest populations were found in soil which was moderately contaminated. A greenhouse study in which alfalfa was grown in the same soils showed no significant trend for nodulation or nitrogenase activity of roots. Highest nodule number and nitrogenase activity were observed in those soils which had the lowest population of R. meliloti. When the heavy metal Minimum Inhibitory Concentration (MIC) of individual isolates was examined, no correlation was found between the MIC and soil metal concentration (total, or water or 0.01 M Ca(NO3)2 extractable).These results indicate that even in highly contaminated soils, metal activity was not high enough to exert an antagonistic influence on the soil rhizobial population or the symbiotic association between alfalfa and R. meliloti.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5036
    Keywords: chlorosis ; copper ; EDTA ; iron precipitation ; metal speciation ; manganese ; stability constants ; zinc
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The form in which a micronutrient is found in the rhizosphere affects its availability to plants. We compared the availability to barley of the free hydrated cation form of Fe3+, Cu2+, Zn2+, and Mn2+ versus their total metal concentrations (free ion plus complexes) in chelator-buffered solutions. Free metal ion activities were estimated using the chemical equilibrium program GEOCHEM-PC with the corrected database. In experiment 1, barley was grown in nutrient solutions with different Fe3+ activities using chelators to control Fe levels. Chlorosis occurred at Fe3+ activities of 10−18 and 10−19 M for barley grown in HEDTA and EDTA solutions, respectively. In experiment 2, barley was grown in nutrient solutions with the same calculated Fe3+ activity and the same chelator, but different total Fe concentrations. Leaf, root and shoot Fe concentrations were higher from CDTA buffered solutions which had the higher total Fe concentration indicating the importance of the total Fe concentration on Fe uptake. Results from treatments using EDTA or HEDTA, with one exception, were similar to the results from the CDTA treatment. This suggests differences in critical Fe3+ activities found in experiment 1 were due to differences in the total Fe concentration and not errors in chelate formation constants used to estimate the critical activities. Results for Cu, Zn, and Mn were similar to Fe; despite solutions with equal free Cu2+, Zn2+ and Mn2+ activities, plant concentrations of these metals were generally greater when grown in the solutions with the greater total amount of Cu, Zn, or Mn. When the free Zn2+ activity was kept constant while the total amount of Zn was increased from 4.4 to 49 μM, leaf Zn concentration increased from 77 to 146 μg g-1. In order to predict metal availability to barley and other species in chelator-buffered nutrient solutions, both free and total metal concentrations in solution must be considered. The critical Fe3+ activities required by barley in this study are much higher than those from tomato and soybean, 10-28 M, which strongly supports the Strategy 2 model of Fe uptake for Poaceae. This is related to the importance of the Fe3+ (barley) and the Fe2+ (tomato and soybean) ions in Fe uptake. Fe-stressed barley is known to release phytosiderophores which compete for Fe3+ in the nutrient solution, while tomato and soybean reduce Fe3+ to Fe2+ at the epidermal cell membranes to allow uptake of Fe2+ from Fe3+ chelates in solution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...