Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1432-0789
    Schlagwort(e): Key words Biological nitrogen fixation ; Bradyrhizobium ; Legume trees ; Plant-microbe interaction ; Sustainable ; agriculture
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract Phenotypic diversity was studied among 13 Rhizobium strains selected from a total of 160 Rhizobium isolates from root nodules of Leucaena leucocephala. Two strains from Acacia saligna and two strains from Sesbania sesban plants were included in the examination for host range in the greenhouse. The Rhizobium sp. (Leucaena) strains were different from the reference strains and fell into three distinct groups for the utilization of 95 different carbon sources. Four of the best symbionts constituted a group, the majority of the strains fell into a second group, and strain DS 91 was the only member of the third group. Strains were effective symbionts for their original hosts. Nine strains were tolerant to elevated temperature (〉42°C), and three strains were resistant to high salinity (〉3% NaCl). All Rhizobium sp. (Leucaena) strains effectively nodulated L. leucocephala and L. culensii, but nitrogen fixation was greater with L. leucocephala than with L. culensii. These strains failed to form effective symbioses with two other species of Leucaena (L. retusa and L. divursiflora) or with alfalfa, Medicago sativa. Rhizobium sp. (Leucaena) strains DS 65, DS 78, and DS 158 nodulated and efficiently fixed nitrogen with Phaseolus vulgaris, with DS 65 showing the highest symbiotic capability. Strain DS 65 also nodulated and fixed nitrogen with Glycine max and Vigna sinensis. Nodulation of Leucaena by two Bradyrhizobium sp. (Acacia) strains was sparse. Strain DS 101 from Sesbania formed nodules on Leucaena, whereas the other strain from Sesbania, DS 110, failed to nodulate this genus.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Biology and fertility of soils 9 (1990), S. 330-334 
    ISSN: 1432-0789
    Schlagwort(e): Bradyrhizobium japonicum ; Inoculation ; Nodule occupancy ; Competition ; Rhizobiophage ; Acetylene reduction assay (ARA)
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Summary Previous laboratory and greenhouse studies have shown that phages significantly reduce soil populations of homologous rhizobia. Reductions in nodulation and N2 fixation have also been observed. The purpose of the current study was to examine the effect of a phage specific ofBradyrhizobium japonicum USDA 117 on nodulation, nodule occupancy, N2 fixation and soybean growth and yield under field conditions. The phage was inoculated in combination withB. japonicum USDA 117 and/orB. japonicum USDA 110 (resistant strain) into a rhizobia-free sandy loam soil and planted toGlycine max (L.) Merr. “Williams”. When the phage was applied to soil inoculated withB. japonicum USDA 117 alone, significant reductions in nodule weight and number, shoot weight, foliar N, nitrogenase activity, and seed index were observed. When, however, the soil also contained the non-homologous strain,B. japonicum USDA 110, no significant effects on any of these parameters were found. Nodule occupancy by competing strains ofB. japonicum USDA 110 and USDA 117 was also affected by the phage. In soil which did not contain the phage, 46% and 44% of the identified nodules were occupied by USDA 110 and 117, respectively. When the phage was present in the soil, nodule occupancy byB. japonicum USDA 117 was reduced to 23%, while occupancy byB. japonicum USDA 110 was increased to 71%. These results suggest that nodulation by selected strains of rhizobia can be restricted and nodulation by more effective, inoculated strains can be increased through the introduction of a homologous phage to soils.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1432-0789
    Schlagwort(e): Key words Biological nitrogen fixation ; Legume trees ; Nitrogenase activity ; Plant-microbe interaction
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract  Rhizobium-legume symbioses are important for their nitrogen input, but salinity and elevated temperature in arid and semi-arid areas limit their effectiveness, and therefore plant growth and productivity. Sixteen Rhizobium strains isolated from root nodules of Leucaena trees grown in different geographical areas of Egypt varied in their degree of tolerance to salinity and in their symbiotic effectiveness with Leucaena leucocephala under saline conditions. Three strains were tolerant to 〉3% NaCl. L. leucocephala grown in the greenhouse at concentrations of NaCl up to 1.0% and inoculated either with strain DS 78 or strain DS 158 displayed significantly better growth than those plants grown at the same levels of salinity and inoculated with reference strain TAL 583. Although nine of the Rhizobium strains grew at 42  °C, their mean generation times were lengthened two- to fourfold. When daylight growth temperatures were elevated from 30  °C to 42  °C, nodule number and mass, nitrogenase activities and shoot top dry weight of plants inoculated with strains DS 78, DS 157 and DS 158 significantly increased, whereas these parameters decreased in plants inoculated with strain TAL 583. Rhizobium strains that effectively nodulate Leucaena under adverse saline conditions and at high temperatures were thus isolated, identified and characterized.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1573-5036
    Schlagwort(e): competitiveness ; inoculant ; nitrogen fixation ; nodulation ; soybean ; yield
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract Bradyrhizobium japonicum strain TA-11NOD+, with altered indole biosynthesis, exhibited enhanced nodulation and nitrogen fixation on soybean in previous greenhouse studies. In this study, field experiments were conducted at Upper Marlboro, Maryland, in the summers of 1988 and 1993. In 1988, the site used was essentially free of soybean-nodulating bacteria and seed yield in plots inoculated with either I-110ARS or TA-11NOD+ was significantly higher by 12 or 20%, respectively, than that of the uninoculated controls. The 1993 site had an indigenous soil population (about 104 cells g-1) of symbiotically ineffective soybean-nodulating bacteria. Nevertheless, six-week-old ‘Morgan’ soybean plants inoculated with strain TA-11NOD+ had 44% more nodules and exhibited 50% more nitrogen fixation by acetylene reduction when compared with plants that received the parental strain I-110ARS. Nodule occupancy, as determined using genetic markers for rifampicin and streptomycin resistance, was significantly higher for strain TA-11NOD+ than for strain I-110ARS. Overall, for the two years and the two soybean genotypes, the yield obtained with TA-11NOD+ was 6% higher than that obtained with I-110ARS. Competition experiments were conducted in the greenhouse and strain TA-11NOD+ was significantly more competitive than strain I-110ARS in competition with strains USDA 6 or USDA 438.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Springer
    Plant and soil 186 (1996), S. 127-134 
    ISSN: 1573-5036
    Schlagwort(e): host range ; megaplasmid ; phage typing ; rhizobiophage ; Rhizobium fredii
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract This is the first report identifying bacteriophages and documenting megaplasmids of Sinorhizobium fredii. Plasmid DNA content and bacteriophage typing of eighteen strains of S. fredii were determined. S. fredii strains fell into ten plasmid profile groups containing 1 to 6 plasmids, some evidently larger than 1000 MDa. Twenty-three S. fredii lytic phages were isolated from soil, and they lysed six different S. fredii strains. The host range and plaque morphology of these phages were studied. Susceptibility to S. fredii phages was examined for S. meliloti; Rhizobium leguminosarum bvs. viceae, trifolii and Phaseoli; R. loti; Bradyrhizobium japonicum; B. elkanii and Bradyrhizobium sp. (Arachis). Several phages that originally lysed S. fredii strain USDA 206 also lysed strains of all three S. fredii serogroups described originally by Sadowsky et al. Phages that infected S. fredii strains USDA 191 and USDA 257 were highly specific and lysed only serogroup 193 strains. S. meliloti strains L5-30 and USDA 1005 were lysed by three of the phages that lysed S. fredii strain USDA 217. No other Rhizobium or Bradyrhizobium strain tested was susceptible to lysis by any of the S. fredii phages. The present investigation indicates that phage susceptibility in conjunction with plasmid profile analysis may provide a rapid method for identification and characterization of strains of S. fredii.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...