Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (3)
Material
Years
Year
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experiments to explore the long-time evolution of noninductive, high βp plasmas in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159], have identified a new, quiescent, high performance regime. The experiments were carried out at low current (400–800 kA) with medium power neutral beam injection (3–10 MW). This regime is characterized by high q0 ((approximately-greater-than)2) and moderate li(∼1.3). It is reached by slow relaxation of the current profile, on the resistive time scale. As the profiles relax, q0 rises and li falls. When q0 goes above 2 (approximately), magnetohydrodynamic (MHD) activity disappears, and the stored energy rises. Most dramatic is the strong peaking of the central density, which increases by as much as a factor of 2. The improved central confinement appears similar to the PEP/reversed central shear/second stable core modes seen in tokamak experiments, but in this case without external intervention or transient excitation. At high current, a similar, but slower relaxation is seen. Also notable in connection with these discharges is the behavior of the edge and scrape-off layer (SOL). The edge localized modes (ELM's) as seen previously, are small and very rapid (to 1 kHz). The SOL exhibits high density (≥1×1019 m−3), which shows little or no falloff with radius. Also the power deposition at the divertor surface is very broad, up to four times the width usually seen. This regime is of particular interest for the development of steady-state tokamak operating scenarios, for the Tokamak Physics Experiment (TPX), and following reactors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: In the microwave tokamak experiment (MTX) program, we are concentrating on experiments using intense, free-electron laser (FEL) generated microwave pulses. In initial FEL experiments, several diagnostic instruments were operated during injection of microwave pulses with peak powers to 0.2 GW at durations of 10 ns. Fixed and spatially scanning microwave detectors and receivers and a 48-element calorimeter on the inside wall of MTX diagnosed the GW-level FEL microwave pulses. With these diagnostics, linear-wave absorption and efficiencies of transmission through the quasi-optical transport system were studied. In addition, several radially resolved measurements of plasma density, temperature, and emission were made during FEL injection and were used in the analysis of microwave absorption data. A timing system, slaved to the FEL pulse arrival time, is capable of accuracy to a few nanoseconds in order to allow measurement of heating effects on the time scale of a single FEL pulse.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    International journal of infrared and millimeter waves 11 (1990), S. 1011-1032 
    ISSN: 1572-9559
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A novel device, MAGICTRAC, is described for efficient conversion at millimeter wavelengths of the TE m,n whispering-gallery mode into a linearly polarized, free-space Gaussian-like beam. MAGICTRAC uses a mode-converting waveguide taper and three mirror optics, one of which incorporates a twist reflector to linearly polarize the output beam. An example design is presented for the TE15,2 mode at 140 GHz with a calculated efficiency of 96%. Related possible applications include (1) installation of the MAGICTRAC within the vacuum envelope of a gyrotron to separarate the spent e-beam from the generated rf, (2) generation of a whispering-gallery mode by injection of a Gaussian-like beam into the output end, and (3) conversion of TE m,n modes into TE0n modes for low-loss transmission in smooth-wall waveguide.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...