Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (4)
  • 1980-1984
  • coal  (2)
  • Ammonium  (1)
  • IgA deficiency  (1)
Material
Years
  • 1985-1989  (4)
  • 1980-1984
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 189-190 
    ISSN: 1432-0789
    Keywords: Nitrogen ; Ammonium ; Nitrate ; Nitrogen extraction ; Soils ; Nitrogen mineralization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A roller bed and rotary end-over-end shaker were compared for the extraction of mineral N from a variety of soil types; both were equally efficient with an optimum extraction time of 30 min. However, the roller bed permitted a greater operational capacity, a faster throughput of samples, and easier identification of sample bottles compared with the end-over-end shaker. More NH4 +-N and NO3 −-N (P〈0.001) was recovered from soil by 2 M KCl than by any other extractant, in a soil: extractant ratio of 1 to 5 (w:v), except water, which was equally efficient at removing NO3 −-N from soils.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of clinical immunology 8 (1988), S. 356-361 
    ISSN: 1573-2592
    Keywords: IgA deficiency ; anti-IgA antibodies
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract IgG and IgM isotype antibodies to polyclonal human IgA, myeloma IgA1, and myeloma IgA2 were estimated in 38 IgA-deficient children aged between 0.9 and 15 years. All children had IgM anti-IgA antibodies. IgG antibodies against either polyclonal IgA, IgA1, or IgA2 were present in 63% of the IgA-deficient children. IgG anti-IgA antibodies were detected against all three antigens in 8 of 11 severely IgA-deficient children and in 7 of 27 partially IgA-deficient children, but in only 1 of 23 healthy adult controls. The proportion of children with IgG anti-IgA antibodies was significantly greater in the severely IgA-deficient group in comparison with the partially IgA-deficient group and the adult controls (chi-square test,P〈0.01 andP〈0.005, respectively). There was a strong correlation within each IgG subclass between antibody responses toward each of the three IgA antigens. Twenty-four children were followed over a period ranging from 0.9 to 11 years (mean, 2.3 years). Three children who were initially IgG anti-IgA antibody negative became antibody positive and three who were antibody positive became antibody negative. Five children with severe IgA deficiency remained severely IgA deficient and IgG antibodies to IgA persisted in all five at follow-up. The presence of IgG anti-IgA antibodies did not influence the normalization of serum IgA at follow-up in 14 of 19 children who were initially partially IgA deficient.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 6 (1985), S. 673-679 
    ISSN: 1572-9567
    Keywords: aggregate structure ; coal ; equation-of-motion method ; density dependence ; frequency spectrum ; “gel” model ; harmonic nearest-neighbor forces ; heat capacity ; hexagonal structure ; porous structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Coal is a sedimentary, organic “rock” which is almost never in a state of thermal equilibrium. Because of its importance, the thermal properties of this ill-characterized substance are of great interest. Recent work has shown that coal has many of the characteristics of a gel-type structure. We have made this observation the basis for a model study of the thermal properties of a gel system, using the equation-of-motion method to determine the density of states for the system and, thereby, its heat capacity. This model has one of the essential features of a model of coal, namely, a porous structure. With a hexagonal close-packed lattice as the basis for our gel, we have calculated the frequency spectrum for several particle densities. The disorder in the system has a marked effect on the frequency spectrum, shifting a larger number of modes from high to low frequencies. Also, for a gel with 3% vacancies, and in-plane, out-of-plane bond strengths at the ratio 2∶ 1, there is a further shift to lower frequencies and the two-peaked spectrum expected for such an anisotropic structure develops. The heat capacity is affected only at low temperatures. We conclude that the gel model provides a satisfactory basis for development as a model of coal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 8 (1987), S. 133-145 
    ISSN: 1572-9567
    Keywords: atmospheric effects ; coal ; heat capacity ; modeling ; water desorption
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract During the development of transferable measurement techniques for the heat capacity of raw coal, it was observed that the atmosphere in sealed sample cells affected the thermal behavior, particularly during the initial measurements. The model which had been used to represent the specific heat of coal did reproduce the results in air but failed to reproduce the deep exotherm of the thermograms obtained in nitrogen. The specific heat of coal has been determined in helium, argon, and carbon monoxide to provide insight into possible modifications to the model. The results of initial and repeat runs in the five different atmospheres and the impact of these results on the modeling are presented and discussed. The agreement between the experimental heat capacity and that predicted by the model, up to 500 K, is excellent and supports Merrick's predictions for the heat capacity of coal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...