Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (3)
  • 1970-1974  (1)
  • Cat  (2)
  • Fermentation  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 17 (1973), S. 315-332 
    ISSN: 1432-1106
    Keywords: Red nucleus ; Unit recording ; Motor cortex ; Topographical organization ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary A topographical study of the cortico-rubrospinal pathway was conducted in cats anesthetized with chloralose. Extracellular unit recordings were made from cells in the red nucleus projecting to the spinal cord. They were identified by antidromic invasion following stimulation of their axones at the 2nd cervical and 9th thoracic levels of the spinal cord. I. The pericruciate cortical regions from which spikes could be induced in rubrospinal neurons were limited to the lateral part of the anterior sigmoid gyrus, the lateral sigmoid gyrus and the anterior part of the posterior sigmoid gyrus. No responses were obtained from stimulation of the medial part of the anterior sigmoid gyrus or the gyrus proreus. Compared to the somatotopic organization of the motor cortex for the cat described by Woolsey (1958), our results show that the rubrospinal cells receive projections from the motor cortex controlling proximal and distal muscles but not axial muscles. II. Neurons projecting to the cervico-thoracic cord receive afferents from the lateral part of the anterior sigmoid gyrus and the lateral sigmoid gyrus whereas those projecting to the lumbo-sacral cord receive projections from the entire surface of the sigmoid gyrus except the medial part of the anterior sigmoid gyrus and the gyrus proreus. III. A latero-medial organization of cells within the red nucleus was found according to the origin of their cortical afferents. Rubrospinal neurons with fibers terminating in the cervical or thoracic cord receive projections from the motor cortex controlling the proximal musculature of the forelimb when they are located in the dorso-lateral region of the nucleus and the entire forelimb motor cortex when they are located in the medial part of the nucleus. It is suggested that this organization may indicate a control of proximal forelimb musculature by dorsolateral rubrospinal cells and distal musculature by medial cells. IV. Rubrospinal cells placed medially in the nucleus receive more convergent projections (i.e. from a greater cortical surface) than cells placed more laterally. It was shown that for certain cells the convergence occurs in the direct pathway. These results are discussed in terms of a functional organization allowing coordinated movements of different segments of a single limb or of different limbs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 60 (1985), S. 411-416 
    ISSN: 1432-1106
    Keywords: Vision ; Motion after-effects ; Cat ; Visual cortex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Responses of striate cortical neurones to bars of optimal orientation and width, moving with fixed velocity, were recorded in the lightly anaesthetized cat. Effects of periods of pre-adaptation with square-wave gratings of variable spatial frequency and velocity, drifting continuously in each cell's preferred or null directions, were investigated. Variations of cells' directional bias and responsiveness to oriented bars were assessed in relation to the degree and time-course of pre-adaptation to drifting gratings, compared with the preceding level of firing when exposed to uniform backgrounds of the same average luminance. All cells showed some susceptibility to pre-adapting moving gratings: subsequent responses to a bar were initially depressed in the direction of pre-adaptation and, in direction-biased or bidirectional cells, were enhanced in the opposite direction, compared with bar responses following exposure merely to a uniform background. These effects were strongest and most consistent amongst standard complex cells and weakest amongst special complex cells: maximal effects were obtained with adapting gratings of optimal velocity and spatial frequency.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Planta 166 (1985), S. 264-270 
    ISSN: 1432-2048
    Keywords: Fermentation ; Nodule ; Phosphoenolpyruvate carboxylase ; Pisum (fermentation) ; Rhizobium ; Root (fermentation)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The aim of this work was to compare the capacities for fermentation and synthesis of malate from phosphoenolpyruvate in roots and Rhizobium nodules of Pisum sativum. The nodules and the cortices and apices of roots had similar activities of glycolytic enzymes and enzymes of ethanolic and lactic fermentation when expressed on a protein basis. The activity of phosphoenolpyruvate carboxylase was similar in nodules and apices, and three to four fold lower in cortices. All three tissues had very high activities of malate dehydrogenase, significant activity of NADP-malic enzyme, and no detectable activity of phosphoenolpyruvate carboxykinase. These results do not support the belief that nodules have a substantially greater capacity to convert phosphoenolpyruvate to malate than roots, or that there are major qualitative differences in the pathways of fermentation of nodules and roots.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Keywords: Alcohol dehydrogenase ; Fermentation ; Flooding tolerance ; Marsh plant
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The aim of this work was to discover whether oxygen tensions in the roots of marsh plants in flooded soils are high enough to allow fully acrobic metabolism. Activity of alcohol dehydrogenase (ADH), a protein synthesised in anoxic plants, was measured in roots of marsh plants growing in habitats where the availability of oxygen to the roots would be expected to differ. Roots of Carex riparia in standing water had ADH activities about 2.5 times higher than those of phosphofructokinase, and comparable to ADH activities of Poa trivialis, Urtica dioica and Ranunculus repens roots in dry soil. Removal of the oxygen supply via aerenchyma to Carex roots caused a 30-fold increase in ADH activity relative to that of phosphofructokinase. There was no change in ADH activity with depth in Carex roots in waterlogged soil, but in Filipendula ulmaria roots activity was 14 times higher below 10 cm depth than near the surface. Urtica roots in waterlogged soil had alcohol dehydrogenase activities 26 times higher than roots in dry soil, but for Poa and Ranunculus roots this figure was only 1.7 and 4.2, respectively. These results indicate that the oxygen tensions in the roots of marsh plants in waterlogged soil differ considerably among species. Ethanol was the major product of fermentation in roots of all species studied. There was no correlation between ADH activity and the rate of ethanol production under anoxia of Urtica roots. The physiological significance of high ADH activities in roots is thus unclear.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...