Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 116 (1997), S. 326-340 
    ISSN: 1432-1106
    Keywords: Key words Magnocellular red nucleus ; Intracellular recording ; Somaesthetic pathways ; Motor control ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Somaesthetic input to rubrospinal cells, bypassing the cerebellum and cerebral cortex, has been demonstrated in the cat. The detailed organization of this somatic afferent system was studied using electrophysiological methods on multiple-lesion, chloralose-anaesthetized preparations. Stimulation of the dorsal column (DC) at upper cervical cord segments induced significant responses in magnocellular red nucleus (RNm) cells in cats without a cerebellum and with ablation of the frontal cortex. As classic descriptions state that primary afferents fibres have ascending and descending branches in the DC, with many collaterals arborizing in the grey matter at the segmental level of the cord, this procedure is equivalent to stimulating the somatic fibres coming from a large portion of the body, leading to the simultaneous activation of most ascending spinal pathways. To show that the pathway responsible for the rubral responses ascends in the ventral spinal cord, and that the synaptic relays are located at the segmental level, the stimulation was applied to the DC, caudally to the sectioned dorsal spinal half. Various tests confirmed that the activation was conducted to rubral cells through antidromically activated primary afferents. Their multiple collaterals relay the messages to cells located caudal to the spinal lesion, with fibres ascending in the ventral cord. Any relay of the somatic rubral responses in the DC’s nuclei was excluded. When the DC was sectioned and its rostral end was dissected free and lifted onto two hook electrodes for stimulation, no response was obtained in the rubral cells. This dissection indeed sectioned all DC fibre collaterals entering the grey matter, thus excluding the possibility of segmental relay. Single shocks applied to the ventral quadrant of the cord or in the medial lemniscus (LM) in the medulla oblongata induced monosynaptic excitatory post-synaptic potentials (EPSPs) in most rubrospinal cells. The spinal EPSPs could be collided by stimulation in the LM, thus demonstrating the existence of direct connections from the cord to the RNm. This somaesthetic pathway to the RNm could be involved in on-line correction of movements and in learning new motor strategies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 17 (1973), S. 315-332 
    ISSN: 1432-1106
    Keywords: Red nucleus ; Unit recording ; Motor cortex ; Topographical organization ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary A topographical study of the cortico-rubrospinal pathway was conducted in cats anesthetized with chloralose. Extracellular unit recordings were made from cells in the red nucleus projecting to the spinal cord. They were identified by antidromic invasion following stimulation of their axones at the 2nd cervical and 9th thoracic levels of the spinal cord. I. The pericruciate cortical regions from which spikes could be induced in rubrospinal neurons were limited to the lateral part of the anterior sigmoid gyrus, the lateral sigmoid gyrus and the anterior part of the posterior sigmoid gyrus. No responses were obtained from stimulation of the medial part of the anterior sigmoid gyrus or the gyrus proreus. Compared to the somatotopic organization of the motor cortex for the cat described by Woolsey (1958), our results show that the rubrospinal cells receive projections from the motor cortex controlling proximal and distal muscles but not axial muscles. II. Neurons projecting to the cervico-thoracic cord receive afferents from the lateral part of the anterior sigmoid gyrus and the lateral sigmoid gyrus whereas those projecting to the lumbo-sacral cord receive projections from the entire surface of the sigmoid gyrus except the medial part of the anterior sigmoid gyrus and the gyrus proreus. III. A latero-medial organization of cells within the red nucleus was found according to the origin of their cortical afferents. Rubrospinal neurons with fibers terminating in the cervical or thoracic cord receive projections from the motor cortex controlling the proximal musculature of the forelimb when they are located in the dorso-lateral region of the nucleus and the entire forelimb motor cortex when they are located in the medial part of the nucleus. It is suggested that this organization may indicate a control of proximal forelimb musculature by dorsolateral rubrospinal cells and distal musculature by medial cells. IV. Rubrospinal cells placed medially in the nucleus receive more convergent projections (i.e. from a greater cortical surface) than cells placed more laterally. It was shown that for certain cells the convergence occurs in the direct pathway. These results are discussed in terms of a functional organization allowing coordinated movements of different segments of a single limb or of different limbs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 33 (1978), S. 101-130 
    ISSN: 1432-1106
    Keywords: Cortico-, rubro and tectospinal tracts ; Cervical primary afferents ; Monosynaptic EPSPs ; Propriospinal neurones C3-C4
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Recording was made in the C3-C4 segments from cell bodies of propriospinal neurones identified by their antidromic activation from more caudal segments. Monosynaptic excitatory effects from descending motor pathways and primary afferents were investigated by electrical stimulation of higher motor centres and peripheral nerves in the forelimb and neck. The cell bodies were located mainly laterally in Rexed's layer VII. Threshold mapping for single axons showed that they descend in the lateroventral part of the lateral funicle. Antidromic stimulation at different spinal cord levels showed that some neurones terminated in the forelimb segments, others in the thoracic cord or in the lumbar segments. Terminal slowing of the conduction velocity suggested axonal branching over some segments. Monosynaptic EPSPs were evoked in the neurones by stimulation of the contralateral pyramid, red nucleus and dorsal tegmentum-superior colliculus. It is concluded that corticospinal, rubrospinal and tectospinal fibres project directly to both short and long propriospinal neurones. There was marked frequency potentiation in tectospinal synapses. Convergence from two descending tracts was common and in half of the tested cells all three tracts contributed monosynaptic excitation. Experiments with collision of descending volleys and antidromic volleys from the brachial segments demonstrated that the corticospinal and rubrospinal monosynaptic projection to the propriospinal neurones is by collaterals from fibres continuing to the forelimb segments. Stimulation of cervical primary afferents in the dorsal column gave monosynaptic EPSPs in somewhat less than half of the tested propriospinal neurones. The further analysis with stimulation of forelimb nerves and C2-C3 dorsal rami showed that monosynaptic EPSPs may be evoked from low threshold cutaneous and group I muscle afferents in the forelimb and from C2-C3 neck afferents entering close to the spinal ganglia, possibly from joint receptors. Convergence from cervical afferents and at least two of the above descending tracts was common. It is postulated that the propriospinal neurones previously indirectly defined by their action on motoneurones as relaying disynaptic excitation from higher motor centres to forelimb motoneurones (Illert et al., 1977) belong to those neurones of the C3-C4 propriospinal systems which terminate in the cervical enlargement. The function of the neurones projecting beyond the upper thoracic segments is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 14 (1972), S. 363-371 
    ISSN: 1432-1106
    Keywords: Rubrospinal cells ; Unit recording ; Topographical organization ; Conduction velocity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Mapping of cells at the origin of the rubrospinal tract was conducted in the cat. 1. Rubrospinal neurons sending efferents to cervico-thoracic segments of the spinal cord are located in the dorso-medial part of the nucleus. These neurons are especially medial in the caudal planes and especially dorsal in the rostral planes. Neurons with efferents terminating at the level of lumbo-sacral segments of the cord occupy the ventro-lateral part of the nucleus. These neurons are especially lateral in the caudal planes and especially ventral in the rostral planes. The limit between these two cell populations is clear in the caudal and middle thirds of the nucleus but considerable overlap is seen in the rostral third. These results agree with the anatomical findings of Pompeiano and Brodal (1957). 2. For the population of lumbar neurons the conduction velocities ranged from 31 m/sec to more than 120 m/sec with a mean of 85 m/sec. 3. Rubrospinal cells are found throughout the nucleus. The most caudal planes are essentially composed of cells with rapidly conducting fibers whereas in the middle and rostral planes a cell population with increasingly slower conducting fibers appears. The results of the present study are discussed in relation to classical data on the magnocellular and parvocellular divisions of the red nucleus. 2.The third author acknowledge the personal support of the Medical Research Council of Canada.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 50 (1983), S. 309-320 
    ISSN: 1432-1106
    Keywords: Red nucleus ; Cerebral cortex ; Intracellular recording ; Topography ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The relations between the cerebral cortex and the red nucleus have been studied in acute, chloralose anaesthetized cats using intracellular recording techniques. Stimulation of the cerebral cortex induces in rubrospinal cells a short latency excitation followed by a long lasting silent period. The evidence is presented that at least a great part of the latter is due to genuine IPSP evoked in these cells. Three populations of rubrospinal neurones have been distinguished according to the cortical origin of their afferents: one group receives projections from the forelimb cortical area. These cells project to the cervical spinal cord and thus should control the forelimb. The second group receives projections from the hindlimb cortical area. These cells project to the lumbar spinal cord and should control the hindlimb. The third group of rubrospinal neurones receives convergent projections from both forelimb and hindlimb cortical areas. If these cells have collateralized axons terminating in both rostral and caudal spinal cord, they could contribute to the coordination of fore- and hindlimb movements. The projections originate in cytoarchitectonic areas 1–5 i.e. in the primary motor and sensory areas and in the rostral portion of the parietal area. No projection has been found from area 6 (premotor) or from area 7 (caudal parietal). The projection upon single rubrospinal cells has been found to originate from large cortical regions with a large overlap between those with excitatory and inhibitory actions. This could indicate the intermingling of cortical cells transmitting both effects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 79 (1990), S. 412-426 
    ISSN: 1432-1106
    Keywords: Red nucleus ; Sensori-motor control ; Spino-rubral pathway ; Intracellular recordings ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Although it has been known for a long time that in awake cats, natural stimulation of the skin induces short latency responses in rubrospinal cells, the pathway possibly involved has been identified only recently (Padel et al. 1988). This tract, which was described in acute, chloralose anaesthetized cats, ascends in the ventromedial spinal cord and is activated via collaterals of primary afferent fibres running in the dorsal columns of the spinal cord. The present study demonstrates that this newly described spino-rubral tract is able to send detailed somaesthetic information to the red nucleus. After lesions leaving intact only the spino-rubral pathway, excitatory and inhibitory responses to natural peripheral stimulations were recorded in identified rubral efferent cells. The most effective stimuli were touching the skin, passive joint rotation and hair displacement. Each cell was found to possess a particular receptive field. These fields which could be ipsi-, contra-, or bi-lateral were generally located on a single limb, although they could include two or more limbs, or even exceptionally the whole body with or without preferential zones. The topographic organization of receptive fields was arranged somatotopically in the red nucleus and overlapped the motor representation. The somaesthetic inputs transmitted through the spino-rubral pathway to the red nucleus are very similar to those previously observed in the intact cat, which supports the idea that this pathway may play a functional role in motor control. The spino-rubro-spinal loop may provide a fast adaptation of the descending motor command, thus producing a fine and harmonious tuning between the changing surroundings and the animal's movements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 75 (1989), S. 639-643 
    ISSN: 1432-1106
    Keywords: Motor cortex ; Somaesthetic responses ; Spinothalamic system ; Intracellular recording ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Evidence is presented that in the cat, the spinothalamic system contributes to short latency somaesthetic responses in motor cortex efferent cells. Intracellular recordings performed on identified pyramidal tract cells and corticospinal cells show that these cells are still activated and/or inhibited from the periphery after a set of central nervous lesions leaving intact only the ventral half of the spinal cord. The responses were attributed to the spinothalamic system. The ascending system is activated through collaterals of afferent fibres running in the dorsal columns of the spinal cord. This peripheral link to the motor cortex might participate in updating the motor command on the basis of information feedback from the periphery.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 27 (1971), S. 271-272 
    ISSN: 1420-9071
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Résumé Il a été montré, par enregistrement unitaire, que les afférences à partir du cortex moteur sur les cellules rubrospinales proviennent seulement de l'aire 4. Ces projections sont organisées de manière topique, bien que certaines cellules soient activées par des zones corticales étendues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...