Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (2)
  • GABA  (1)
  • Na+ and Cl− concentration  (1)
  • Bicuculline
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 40 (1980), S. 247-250 
    ISSN: 1432-1106
    Keywords: Extracellular Ca2+ activity ; Cerebral cortex ; Excitatory aminoacids ; Ca2+ antagonists ; GABA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Extracellular Ca2+ activity (aCa) changes were measured with Ca2+-sensitive microelectrodes in the cat cerebral cortex during iontophoretic administration of excitatory and inhibitory aminoacids. Glutamate, aspartate and DL homcysteate usually decreased aCa from a baseline of 1.3 mM to as low as 0.1 mM. The amplitude of the changes was largest at depths between 100 and 300 μm beneath the cortical surface. The aCa decreases could be deminished or blocked by Co2+, Mn2+ or La3+ as well as by GABA. These data suggest that large Ca2+ conductances that may be voltage-sensitive are present in apical dendrites of neocortical neurones.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Extracellular space ; Na+ and Cl− concentration ; Effects of metabolism on osmolarity ; Epilepsy ; Cerebral cortex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Extracellular Na+- and Cl−-concentrations ([Na+]o, [Cl−]o) were recorded with ion-selective microelectrodes during repetitive stimulation and stimulus-induced self-sustained neuronal afterdischarges (SAD) in the sensorimotor cortex of cats. In all cortical layers [Na+]o initially decreased by 4–7 mM. In depths of more than 600 μm below the cortical surface such decreases usually turned into increases of 2–6 mM during the course of the SADs, whereas in superficial layers [Na+]o never rose above its resting level. [Cl−]o always showed an increase in the course of the SADs often preceded by an initial small decrease. The average increase at a depth of 1,000 μm was about 7 mM. [Cl−]o reached peak values at about the end of the ictal period, whereas [Na+]o reached its maximum shortly after the end of the SAD, at times when [K+]o was still elevated above the baseline concentration. These data indicate that the extracellular osmolarity can increase during SAD by up to 30 mM. Such an increase in osmolarity can be explained by an increase in the number of intracellular particles, caused by cleavage of larger molecules during enhanced metabolism. This could lead to cell-swelling due to passive water influx from the extracellular space (ES). However, the resulting reduction of the size of the ES is calculated to be less than 10% for an increase in intracellular osmolarity by 30 mOsm. This value is too small as compared to previously measured ES-reductions under similar conditions (i.e., 30% reduction at 1,000 μm; Dietzel et al. 1980). Reductions of the size of the ES that accompany the observed changes in the ionic environment, are quantitatively explained on the basis of the extended glial buffering mechanism described in the preceding paper.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...